

Approved For Public Release; Distribution Unlimited

Prepared for US Army Corps of Engineers Washington, DC 20314

LPBRARY
FEB 111985
Bureau of Reclamation
Denver, Colorado

SHORE PROTECTION MANUAL

VOLUME II

(Chapters 6 Through 8; Appendices A Through D)
DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers COASTAL ENGINEERING RESEARCH CENTER

1984

Fourth Edition

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 (2-part set; sold in sets only)

TABLE OF CONTENTS

VOLUME I

CHAPTER 1. INTRODUCTION TO COASTAL ENGINEERING

I-Overview of Coastal Engineering and the SPM, page 1-1; II-The Coastal Area, page 1-2; III-The Beach and Nearshore System, page 1-4; IV-Dynamic Beach Response to the Sea, page 1-9; V-Causes of Shoreline Erosion, page 1-15; VI-Coastal Protection Methods and Navigation Works, page 1-17; VII-Conservation of Sand, page 1-25; Literature Cited, page 1-27

CHAPTER 2. MECHANICS OF WAVE MOTION

I-Introduction, page 2-1; II-Wave Mechanics, page 2-1; III-Wave Refraction, page 2-60; IV-Wave Diffraction, page 2-75; V-Wave Reflection, page 2-109; VI-Breaking Waves, 2-129; Literature Cited, page 2-137; Bibliography, page 2-147

CHAPTER 3. WAVE AND WATER LEVEL PREDICTIONS

I-Introduction, page 3-1; II-Characteristics of Ocean Waves, page 3-1; III-Wave Field, page 3-19; IV-Estimation of Surface Winds for Wave Prediction, page 3-27; V-Simplified Methods for Estimating Wave Conditions, page 3-39; VI-Wave Forecasting for Shallow Water, page 3-55; VII-Hurricane Waves, page 3-77; VIII-Water Level Fluctuations, page 3-88; Literature Cited, page $3-130$; Bibliography, page $3-140$

CHAPTER 4. LITTORAL PROCESSES

I-Introduction, page 4-1; II-Littoral Materials, page 4-12; III-Littoral Wave Conditions, page 4-29; IV-Nearshore Currents, page $4-46$; V-Littoral Transport, page $4-55$; VI-Role of Foredunes in Shore Processes, page 4-108; VII-Sediment Budget, page 4-113; VIIIEngineering Study of Littoral Processes, page 4-133; IX-Tidal Inlets, page 4-148; Literature Cited, page $4-182$; Bibliography, page $4-208$

CHAPTER 5. PLANNING ANALYSIS

I-General, page 5-1; II-Seawalls, Bulkheads, and Revetments, page 5-2; III-Protective Beaches, page 5-6; IV-Sand Dunes, page 5-24; V-Sand Bypassing, page 5-26; VI-Groins, page 5-35; VII-Jetties, page 5-56; VIII-Breakwaters, Shore-Connected, page 5-58; IX-Breakwaters, Offshore, page 5-61; X-Environmental Considerations, page 5-74; Literature Cited, page 5-75

VOLUME II

CHAPTER 6. STRUCTURAL FEATURES

I-Introduction, page 6-1; II-Seawalls, Bulkheads, and Revetments, page 6-1; III-Protective Beaches, page 6-14; IV-Sand Dunes, page 6-37; V-Sand Bypassing, page 6-53; VI-Groins, page 6-76; VII-Jetties, page 6-84; VIII-Breakwaters, Shore-Connected, page 6-88; IX-Breakwaters, Offshore, page 6-93; X-Construction Materials and Design Practices, page 6-95; Literature Cited, page 6-99

CHAPTER 7. STRUCTURAL DESIGN: PHYSICAL FACTORS

I-Wave Characteristics, page 7-1; II-Wave Runup, Overtopping, and Transmission, page 7-16; III-Wave Forces, page 7-100; IV-Velocity Forces-Stability of Channel Revetments, page 7-249; V-Impact Forces, page 7-253; VI-Ice Forces, page 7-253; VII-Earth Forces, page 7-256; Literature Cited, page 7-261; Bibliography, page 7-277

CHAPTER 8. ENGINEERING ANALYSIS: CASE STUDY

I-Introduction, page 8-1; II-Statement of Problem, page 8-1; III-Physical Environment, page 8-1; IV-Preliminary Design, page 8-46; V-Computation of Potential Longshore Transport, page 8-85; VI-Beachfill Requirements, page 8-90; Literature Cited, page 8-93
APPENDIX A. GLOSSARY, page A-1
APPENDIX B. LIST OF SYMBOLS, page B-1
APPENDIX C. MISCELLANEOUS TABLES AND PLATES, page C-1
APPENDIX D. INDEX, page D-1

CHAPTER 6

Structural Features

Palm Beach, Florida, 3 October 1964

CONTENTS

CHAPTER 6

STRUCTURAL FEATURES

Page
I INTRODUCTION 6-1
II SEAWALLS, BULKHEADS, AND REVETMENTS 6-1

1. Types 6-1
2. Selection of Structural Type 6-13
III PROTECTIVE BEACHES 6-14
3. General 6-14
4. Existing Protective Beaches 6-16
IV SAND DUNES 6-37
5. Sand Movement 6-37
6. Dune Formation 6-38
7. Dune Construction Using Sand Fencing 6-38
8. Dune Construction Using Vegetation 6-43
V SAND BYPASSING 6-53
9. Fixed Bypassing Plants 6-54
10. Floating Bypassing Plants 6-59
11. Additional Bypassing Schemes 6-75
VI GROINS 6-76
12. Types 6-76
13. Selection of Type 6-84
14. Design 6-84
VII JETTIES 6-84
15. Types 6-84
VIII BREAKWATERS, SHORE-CONNECTED 6-88
16. Types 6-88
IX BREAKWATERS, OFFSHORE 6-93
17. Types 6-93
18. Segmented Offshore Breakwaters 6-95
X CONSTRUCTION MATERIALS AND DESIGN PRACTICES 6-95
19. Concrete 6-95
20. Stee1 6-96
21. Timber 6-96
22. Stone 6-97
23. Geotextiles 6-97
24. Miscellaneous Design Practices 6-97
LITERATURE CITED 6-99

TABLES

Page
6-1 CERC research reports on the geomorphology and sediments of the Inner Continental Shelf 6-15
6-2 Beach restoration projects in the United States 6-25
6-3 Regional adaption of foredune plants 6-45
6-4 Planting and fertilization summary by regions 6-47
6-5 Comparisons of annual sand accumulation and dune growth rates 6-52
FIGURES
6-1 Concrete curved-face seawall 6-2
6-2 Concrete combination stepped- and curved-face seawa11 6-3
6-3 Concrete stepped-face seawall 6-4
6-4 Rubble-mound seawa11 6-5
6-5 Rubble-mound seawall (typical stage placed) 6-6
6-6 Concrete slab and king-pile bulkhead 6-7
6-7 Steel sheet-pile bulkhead 6-8
6-8 Timber sheet-pile bulkhead 6-9
6-9 Concrete revetment 6-10
6-10 Quarrystone revetment 6-11
6-11 Interlocking concrete-block revetment 6-12
6-12 Interlocking concrete-block revetment 6-13
6-13 Protective beach, Corpus Christi, Texas 6-17
6-14 Protective beach, Corpus Christi, Texas 6-18
6-15 Protective beach, Wrightsville Beach, North Carolina 6-19
6-16 Protective beach, Wrightsville Beach, North Carolina 6-20
6-17 Protective beach, Carolina Beach, North Carolina 6-21
6-18 Protective beach, Carolina Beach, North Carolina 6-22

FIGURES--Continued

Page
6-19 Protective beach, Rockaway Beach, New York. 6-23
6-20 Protective beach, Rockaway Beach, New York 6-24
6-21 Protective beach, Redondo Beach, California 6-29
6-22 Map of protective beach, Redondo Beach, California. 6-30
6-23 View of protective beach facing north from 48th Street, Dade County, Florida 6-33
6-24 Project area depicting five phases of beach restoration, Dade County, Florida. 6-34
6-25 Foredune system, Padre Island, Texas 6-37
6-26 Erecting snow-type sand fencing 6-39
6-27 Snow-type sand fencing filled to capacity, Padre Island, Texas 6-40
6-28 Sand accumulation by a series of four single-fence lifts, Outer Banks, North Carolina 6-41
6-29 Sand accumulation by a series of three double-fence lifts, Outer Banks, North Carolina 6-42
6-30 Sand fence dune with lifts positioned near the crest, Padre Island, Texas 6-42
6-31 Sand fence dune with lifts positioned parallel to the existing fence, Padre Island, Texas 6-43
6-32 Sand fence deterioration due to exposure and storms 6-44
6-33 Mechanical transplanting of American beachgrass 6-46
6-34 American beachgrass dune, Ocracoke Island, North Carolina 6-49
6-35 American beachgrass with sand fence, Core Banks, North Carolina. 6-50
6-36 Sea oats dune, Core Banks, North Carolina. 6-50
6-37 Sea oats dune, Padre Island, Texas 6-51
6-38 European beachgrass dune, Clatsop Spit, Oregon. 6-52
6-39 Types of littoral barriers where sand transfer systems have been used 6-55
6-40 Fixed bypassing plant, South Lake Worth Inlet, Florida 6-57
6-41 Fixed bypassing plant, Lake Worth Inlet, Florida 6-58

CONTENTS

FIGURES--Continued

Page
6-42 Fixed bypassing plant, Rudee Inlet, Virginia 6-60
6-43 Sand bypassing, Port Hueneme, California 6-60
6-44 Sand bypassing, Jupiter Inlet, Florida 6-62
6-45 Sand bypassing, Sebastian Inlet, Florida 6-63
6-46 Sand bypassing, Channel Islands Harbor, California 6-64
6-47 Sand bypassing, Santa Barbara, California 6-65
6-48 Sand bypassing, Fire Island Inlet, New York. 6-66
6-49 Sand bypassing, Hillsboro Inlet, Florida 6-67
6-50 Sand bypassing, Masonboro Inlet, North Carolina 6-68
6-51 Sand bypassing, Perdido Pass, Alabama 6-69
6-52 Sand bypassing, East Pass, Florida 6-70
6-53 Sand bypassing, Ponce de Leon Inlet, Florida, just south of Daytona Beach 6-71
6-54 Timber sheet-pile groin 6-77
6-55 Timber-steel sheet-pile groin 6-78
6-56 Cantilever-steel sheet-pile groin 6-79
6-57 Cellular-steel sheet-pile groin 6-80
6-58 Prestressed-concrete sheet-pile groin. 6-81
6-59 Rubble-mound groin 6-82
6-60 Quadripod and rubble-mound jetty 6-85
6-61 Dolos and rubble-mound jetty 6-86
6-62 Cellular-steel sheet-pile jetty 6-87
6-63 Tetrapod and rubble-mound breakwater 6-89
6-64 Tribar and rubble-mound breakwater 6-90
6-65 Cellular-steel sheet-pile and sheet-pile breakwater 6-91
6-66 Segmented rubble-mound offshore breakwaters 6-94

CHAPTER 6

STRUCTURAL FEATURES

I. INTRODUCTION

This chapter provides illustrations and information concerning the various structural features of selected coastal engineering projects. This chapter complements information discussed in Chapter 5, Planning Analysis.

Sections II through IX of this chapter provide details of typical seawalls, bulkheads, revetments, protective beaches, sand dunes, sand bypassing, groins, jetties, and breakwaters. The details form a basis for comparing one type of structure with another. They are not intended as recommended dimensions for application to other structures or sites. Section X, Construction Materials and Design Practices, provides information on materials for shore structures and lists recommendations concerning the prevention or reduction of deterioration of concrete, steel, and timber waterfront structures.

II. SEAWALLS, BULKHEADS, AND REVETMENTS

1. Types.

The distinction between seawalls, bulkheads, and revetments is mainly a matter of purpose. Design features are determined at the functional planning stage, and the structure is named to suit its intended purpose. In general, seawalls are rather massive structures because they resist the full force of the waves. Bulkheads are next in size; their primary function is to retain fill, and while generally not exposed to severe wave action, they still need to be designed to resist erosion by the wave climate at the site. Revetments are generally the lightest because they are designed to protect shorelines against erosion by currents or light wave action. Protective structures for low-energy climates are discussed in detail in U.S. Army, Corps of Engineers (1981).

A curved-face seawall and a combination stepped- and curved-face seawall are illustrated in Figures 6-1 and 6-2. These massive structures are built to resist high wave action and reduce scour. Both seawalls have sheet-pile cutoff walls to prevent loss of foundation material by wave scour and leaching from overtopping water or storm drainage beneath the wall. The curved-face seawall also has an armoring of large rocks at the toe to reduce scouring by wave action.

The stepped-face seawall (Fig. 6-3) is designed for stability against moderate waves. This figure shows the option of using reinforced concrete sheet piles. The tongue-and-groove joints create a space between the piles that may be grouted to form a sandtight cutoff wall. Instead of grouting this space, a geotextile filter can be used to line the landward side of the sheet piles. The geotextile filter liner provides a sandtight barrier, while permitting seepage through the cloth and the joints between the sheet piles to relieve the buildup of hydrostatic pressure.

Galveston, Texas (1971)

Figure 6-1. Concrete curved-face seawall.

San Francisco, California (June 1974)

Figure 6-2. Concrete combination stepped- and curved-face seawall.

Harrison County, Mississippi (Sept. 1969)
(1 week after Hurricane Camille)

Figure 6-3. Concrete stepped-face seawa11.

Rubble-mound seawalls (Fig. 6-4) are built to withstand severe wave action. Although scour of the fronting beach may occur, the quarrystone comprising the seawall can readjust and settle without causing structural failure. Figure 6-5 shows an alternative to the rubble-mound seawall shown in Figure 6-4; the phase placement of A and B stone utilizes the bank material to reduce the stone required in the structure.

Fernandina Beach, Florida (Jan. 1982)

Figure 6-4. Rubble-mound seawall.

Figure 6-5. Rubble-mound seawall (typical stage placed).
Bulkheads are generally either anchored vertical pile walls or gravity walls; i.e., cribs or cellular steel-pile structures. Walls of soldier beams and lagging have also been used at some sites.

Three structural types of bulkheads (concrete, steel, and timber) are shown in Figures 6-6, 6-7, and 6-8. Cellular-steel sheet-pile bulkheads are used where rock is near the surface and adequate penetration is impossible for the anchored sheet-pile bulkhead illustrated in Figure 6-7. When vertical or nearly vertical bulkheads are constructed and the water depth at the wall is less than twice the anticipated maximum wave height, the design should provide for riprap armoring at the base to prevent scouring. Excessive scouring can endanger the stability of the wall.

The structural types of revetments used for coastal protection in exposed and sheltered areas are illustrated in Figures 6-9 to 6-12. There are two types of revetments: the rigid, cast-in-place concrete type illustrated in Figure $6-9$ and the flexible or articulated armor unit type illustrated in Figures $6-10,6-11$, and $6-12$. A rigid concrete revetment provides excellent bank protection, but the site must be dewatered during construction so that the concrete can be placed. A flexible structure also provides excellent bank protection and can tolerate minor consolidation or settlement without structural failure. This is true for the quarrystone or riprap revetment and to a lesser extent for the interlocking concrete block revetment. Both the articulated block structure and the quarrystone or riprap structure allow for the relief of hydrostatic uplift pressure generated by wave action. The underlying geotextile filter and gravel or a crushed-stone filter and bedding layer relieve the pressure over the entire foundation area rather than through specially constructed weep holes.

Interlocking concrete blocks have been used extensively for shore protection in Europe and are finding applications in the United States, particularly as a form of relatively low-cost shore protection. Typically, these blocks are square slabs with shiplap-type interlocking joints as shown in Figure 611. The joint of the shiplap type provides a mechanical interlock with adjacent blocks.

Virginia Beach, Virginia (Mar. 1953)

Figure 6-6. Concrete slab and king-pile bulkhead.

LIMBRARY

6-7

$$
F=1
$$

Bureau of Reclamation
Denver, Colorado

Nantucket Island, Massachusetts (1972) (photo, courtesy of U.S. Steel)

Figure 6-7. Steel sheet-pile bulkhead.

NOTE:
Dimensions a Derails To
Determined
By Parficular
Site Determined
Condifions.

Figure 6-8. Timber sheet-pile bulkhead.

Pioneer Point, Cambridge, Maryland (before 1966) (photo, courtesy of Portland Cement Association)

Figure 6-9. Concrete revetment.

Chesapeake Bay, Maryland (1972)

Figure 6-10. Quarrystone revetment.

Jupiter Island, Florida (1965)
(photo, courtesy of Carthage Mills Inc.)

Figure 6-11. Interlocking concrete-block revetment.

Figure 6-12. Interlocking concrete-block revetment.

The stability of an interlocking concrete block depends largely on the type of mechanical interlock. It is impossible to analyze block stability under specified wave action based on the weight alone. However, prototype tests at the U.S. Army Engineer Waterways Experiment Station Coastal Engineering Research Center (CERC), on blocks having shiplap joints and tongue-andgroove joints indicate that the stability of tongue-and-groove blocks is much greater than the shiplap blocks (Ha11, 1967). An installation of the tongue-and-groove interlock block is shown in Figure 6-12.

2. Selection of Structural Type.

Major considerations for selection of a structural type are as follows: foundation conditions, exposure to wave action, availability of materials, both initial costs and repair costs, and past performance.

$$
6-13
$$

a. Foundation Conditions. Foundation conditions may have a significant influence on the selection of the type of structure and can be considered from two general aspects. First, foundation material must be compatible with the type of structure. A structure that depends on penetration for stability is not suitable for a rock bottom. Random stone or some type of flexible structure using a stone mat or geotextile filter could be used on a soft bottom, although a cellular-steel sheet-pile structure might be used under these conditions. Second, the presence of a seawall, bulkhead, or revetment may induce bottom scour and cause failure. Thus, a masonry or mass concrete wall must be protected from the effects of settlement due to bottom scour induced by the wall itself.
b. Exposure to Wave Action. Wave exposure may control the selection of both the structural type and the details of design geometry. In areas of severe wave action, light structures such as timber crib or light riprap revetment should not be used. Where waves are high, a curved, reentrant face wall or possibly a combination of a stepped-face wall with a recurved upper face may be considered over a stepped-face wall.
c. Availability of Materials. This factor is related to construction and maintenance costs as well as to structural type. If materials are not available near the construction site, or are in short supply, a particular type of seawall or bulkhead may not be economically feasible. A cost compromise may have to be made or a lesser degree of protection provided. Cost analysis includes the initial costs of design and construction and the annual costs over the economic life of the structure. Annual costs include interest and amortization on the investment, plus average maintenance costs. The best structure is one that provides the desired protection at the lowest annual or total cost. Because of wide variations in the initial cost and maintenance costs, comparison is usually made by reducing all costs to an annual basis for the estimated economic life of the structure.

III. PROTECTIVE BEACHES

1. General.

Planning analysis for a protective beach is described in Chapter 5, Section III. The two primary methods of placing sand on a protective beach are by land-hauling from a nearby borrow area or by the direct pumping of sand through a pipeline from subaqueous borrow areas onto the beach using a floating dredge. Two basic types of floating dredges exist that can remove material from the bottom and pump it onto the beach. These are the hopper dredge (with pump-out capability) and the hydraulic pipeline dredges. A discussion of the above dredges and their application to beach nourishment is presented by Richardson (1976) and the U.S. Army Corps of Engineers (1983a). Hydraulic pipeline dredges are better suited to sheltered waters where the wave action is limited to less than 1 meter (3 feet), but many of the recent nourishment projects have used an offshore borrow source. This has resulted in specially equipped dredges and new dredging techniques.

One of the earliest uses of a hydraulic pipeline dredge in an exposed high-wave energy offshore location was at Redondo Beach, Malaga Cove, California in 1968 (see Ch. 6, Sec. III,2,b). This dredge was held in position by cables and anchors rather than spuds and used a flexible suction
line with jet agitation rather than the conventional rigid ladder and cutterhead. Dredges with a rigid ladder and cutterhead were used on beach fills at Pompano Beach and Fort Pierce, Florida, where the borrow area was offshore on the open ocean.

Some hopper dredges are now available with pump-out capability. After loading at the borrow site (normally offshore), the hopper dredge then moves close to the fill site and pumps sand from the hoppers through a submerged pipeline to the beach. This method is particularly applicable to sites where the offshore borrow area is a considerable distance from the beach restoration project. This method was tested successfully in 1966 at Sea Girt, New Jersey (Mauriello, 1967; U.S. Army Engineer District, Philadelphia, 1967). As offshore borrow areas in the immediate vicinity of protective beach projects become scarce, the use of hopper dredges may become more appropriate.

The choice of borrow method depends on the location of the borrow source and the availability of suitable equipment. Borrow sources in bays and lagoons may become depleted, or unexploitable because of injurious ecological effects. It is now necessary to place increased reliance on offshore sources. CERC reports on the geomorphology, sediments, and structure of the Inner Continental Shelf with the primary purpose of finding sand deposits suitable for beach fill are summarized in Table 6-1. Hobson (1981) presents sediment characteristics and beach-fill designs for 20 selected U.S. sites where the use of offshore borrow sites has been suggested. Sand from offshore sources is frequently of better quality for beach fill because it contains less finegrained sediments than lagoonal deposits. Equipment and techniques are currently capable of exploiting offshore borrow sources only to a limited extent; and as improved equipment becomes available, offshore borrow areas will become even more important sources of beach-fill material.

Table 6-1. CERC research reports on the geomorphology and sediments of the Inner Continental Shelf.

Region	Reference
Palm Beach to Miami, Florida	Duane and Meisburger (1969)
Cape Canaveral to	Meisburger and Duane (1971)
Palm Beach, Florida	
Chesapeake Bay Entrance	Meisburger (1972)
Cape Canaveral, Florida	Field and Duane (1974)
New York Bight	Williams and Duane (1974)
North Eastern Florida Coast	Meisburger and Field (1975)
Western Massachusetts Bay	Meisburger (1976)
Long Island Shores	Williams (1976)
Cape Fear Region, North Carolina	Meisburger (1977 and 1979)
Delaware-Maryland Coast	Field (1979)
Southeastern Lake Michigan	Meisburger, Williams, and Prins (1979)
Galveston, Texas	Williams, Prins, and Meisburger (1979)
Cape May, New Jersey	Meisburger and Williams (1980)
South Lake Erie, Ohio	Williams, et al. (1980)
Long Island Sound	Williams (1981)
Central New Jersey Coast	Meisburger and Williams (1982)

Restoration and widening of beaches have come into increasing use in recent years. Examples are Corpus Christi Beach, Texas (U.S. Army Engineer District, Galveston, 1969); Wrightsville Beach and Carolina Beach, North Carolina (Vallianos, 1970); and Rockaway Beach, New York (Nersesian, 1977). Figures 6-13 to 6-20 illustrate details of these projects with before-andafter photos. Table 6-2 presents a fairly complete listing of beach restoration projects of fill lengths greater than 1.6 kilometers (l mile) that have been completed in the United States. In 1968, beach widening and nourishment from an offshore source was accomplished by a pipeline dredge at Redondo Beach, California. As previously mentioned, this was one of the first attempts to obtain beach fill from a high wave energy location exposed offshore using a pipeline dredge (see Ch. 6, Sec. III,2,b). The largest beach restoration project ever undertaken in the United States was recently completed in Dade County, Florida (see Ch. 6, Sec. III,2,c). Of the projects mentioned, Carolina Beach, Redondo Beach, and the Dade County beaches are discussed below.
a. Carolina Beach, North Carolina. A protective beach was part of the project at Carolina Beach (Figs. 6-17 and 6-18 illustrate the planning and effects of such a protective beach at Corpus Christi, Texas). The project also included hurricane protection; however, the discussion of protective beach planning in this chapter includes only the feature that would have been provided for beach erosion control. The report on which the project is based was completed in 1961 (U.S. Army Engineer District, Wilmington, 1961), and the project was partly constructed in 1965.

The predominant direction of longshore transport is from north to south. This conclusion was based on southerly growth of an offshore bar at Carolina Beach Inlet and on shoaling at Cape Fear, 19 kilometers (12 miles) south of Carolina Beach. Subsequent erosion south of Carolina Beach Inlet and accretion north of the jetty at Masonboro Inlet, about 14 kilometers (9 miles) north of Carolina Beach, have confirmed the direction. The long-term average annual deficiency in material supply for the area was estimated in the basic report at about 10 cubic meters per linear meter (4 cubic yards per linear foot) of beach. This estimate was based on the rate of loss from 1938 to 1957, from the dune line to the 7 -meter ($24-$ foot) depth contour. Carolina Beach Inlet, opened in 1952, apparently had little effect on the shore of Carolina Beach before 1957; therefore, that deficiency in supply was considered the normal deficiency without regard to the new inlet.

For planning, it was estimated that 60 percent of the material in the proposed borrow area in Myrtle Sound (behind Carolina Beach) would be compatible with the native material on the beach and nearshore bottom and would be suitable for beach fill. This estimate assumed that 40 percent of the borrow material was finer in size characteristics than the existing beach material, and therefore would be winnowed due to its incompatibility with the wave climate. The method of Krumbein and James (1965) was considered for determining the volume of fill to be placed. However, insufficient samples were taken from the foreshore and nearshore slopes to develop characteristics of the grain-size distribution for the native beach sand.

(Aug. 1977)
Before restoration

(Mar. 1978)
After restoration
Figure 6-13. Protective beach, Corpus Christi, Texas.

$$
6-17
$$

Figure 6-14. Protective beach, Corpus Christi, Texas.

(Feb. 1965)
Before restoration

(June 1965)
After restoration
Figure 6-15. Protective beach, Wrightsville Beach, North Carolina.

(Oct. 1979)
Fourteen years after restoration

Figure 6-16. Protective beach, Wrightsville Beach, North Carolina.

(1965)

After restoration

Figure 6-17. Protective beach, Carolina Beach, North Carolina.

(June 1981)

Figure 6-18. Protective beach, Carolina Beach, North Carolina.

(Apr. 1973)
Before restoration

(July 1975)
During restoration
Figure 6-19. Protective beach, Rockaway Beach, New York.

Figure 6-20. Protective beach, Rockaway Beach, New York.

Table 6-2. Beach restoration projects in the United States.

Project	Date	Length of fil1 (km) $(\mathrm{mi})$$\|$		Volume of fill		Source of fill material	Method of placement	Periodic maintenance		
				$\left(\mathrm{m}^{3}\right)$	$\left(\mathrm{yd}^{3}\right)$			(m)	(yd^{3})	(date)
Hampton Beach, N.H.	1955	1.6	1.0	303,500	397,000	Hampton Harbor	Hydraulic dredge	$\begin{array}{r} 105,500 \\ 43,600 \end{array}$	$\begin{array}{r} 138,000 \\ 57,000 \end{array}$	$\begin{aligned} & 1965 \\ & 1973 \end{aligned}$
Sand Hill Cove Beach Narragansett, R.I.	1955	1.6	1.0	32,000	42,000	Port Judith Harbor	Hydraulic dredge			
Sherwood Island State Park, Westport, Conn.	1957	1.8	1.1	401,400	535,000	Off shore	Hydraulic dredge			
Seaside Park Bridgeport, Conn.	1957	2.7	1.7	420,500	550,000	Offshore	Hydraulic dredge			
Prospect Beach West Haven, Conn.	1957	1.8	1.1	338,700	443,000	Offshore	Hydraulic dredge			
Hammonasset Beach Madison, Conn.	1955	3.0	1.9	268,400	351,000	Offshore	Hydraulic dredge			
Quincy Shore Beach Quincy, Mass.	1959	2.6	1.6	403,300	527,500	Land	Truck hauled			
Fire Island Inlet to Jones Inlet, N.Y.	1977	3.4	2.1	3,212,100	4,212,300	Navigation channel				
Rockaway Beach, N.Y.	1977	10.0	6.2	4,712,000	6,163,000	Of fshore	Hydraulic dredge			
Barnegat Inlet, Long Beach Island, N.J.	1979	3.7	2.3	740,000	968,000	Barnegat Inlet	Hydraulic dredge			
Atlantic City, N.J.	1970	1.6	1.0	634,600	830,000	Absecon Inlet	Hydraulic dredge			
Ocean City Beach, N.J.	1952	3.1	1.9	1,949,600	2,550,000	Lagoon	Hydraulic dredge			
Virginia Beach, Va.	1953	5.3	3.3	1,070,400	1,400,000	Owl's Creek	Hydraulic dredge	114,700	150,000	Estimated annually
Carolina Beach, N.C.	1965	4.3	2.7	2,012,300	2,632,000	Myrtle Sound	Hydraulic dredge	$\begin{aligned} & 275,200 \\ & 845,600 \\ & 305,800 \end{aligned}$	$\begin{array}{r} 360,000 \\ 1,106,000 \\ 400,000 \end{array}$	$\begin{aligned} & 1967 \\ & 1970 \\ & 1981 \end{aligned}$
Wrightsville Beach, N.C.	1966	5.2	3.2	2,517,700	3,293,000	Banks Channel Masonboro Inlet	Hydraulic dredge	1,022,200	1,337,000	1970
Fort Macon State Park, N.C.	NA	2.4	1.5	NA	NA	NA	NA			
Hunting Island Beach, N.C.	1968	3.1	1.9	573,400	750,000	Inlet	Hydraulic dredge	$\begin{array}{r} 582,100 \\ 468,700 \\ 1,080,100 \end{array}$	$\begin{array}{r} 761,300 \\ 613,000 \\ 1,412,700 \end{array}$	$\begin{aligned} & 1971 \\ & 1975 \\ & 1980 \end{aligned}$
Tybee Island, Ga.	1976	4.2	2.6	1,729,500	2,262,000	Sandbar off Tybee	Hydraulic dredge	76,500	100,000	Estimated annually
Cape Canaveral, Fla.	1975	3.4	2.1	1,758,500	2,300,000	Trident submarine basin	Hydraulic dredge			
Fort Pierce, Fla.	1971	2.1	1.3	549,000	718,000	Offshore	Hydraulic dredge			
Jupiter Island, Fla.	1974	8.0	5.0	2,581,100	3,376,000	Offshore	Hydraulic dredge			
Delray Beach, Fla.	1973	4.5	2.8	1,249,700	1,624,500	Offshore	Hydraulic dredge			
Pompano Beach, Fla.	1970	5.1	3.2	789,800	1,033,000	Offshore	Hydraulic dredge			
Dade County, Fla.	1982	16.9	10.5	10,321,500	13,500,000	Offshore	Hydraulic dredge			
Duval County, Fla.	1979	16.1	10.0	1,720,200	2,250,000	Offshore	Hydraulic dredge			
Virginia Key, Fla.	1969	2.1	1.3	135,300	177,000	Offshore	Hydraulic dredge	76,500	100,000	1973
Key Biscayne, Fla.	1969	1.9	1.2	149,900	196,000	Offshore	Hydraulic dredge			
Treasure Island, Fla.	1969	2.7	1.7	606,300	793,000	Blind Pass Offshore	Hydraulic dredge	$\begin{array}{r} 58,100 \\ 118,500 \end{array}$	$\begin{array}{r} 76,000 \\ 155,000 \end{array}$	$\begin{aligned} & 1971 \\ & 1972 \end{aligned}$
Indian Rocks Beach, Fla.	$\begin{aligned} & 1969 \\ & 1973 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 76,500 \\ 305,800 \end{array}$	$\begin{aligned} & 100,000 \\ & 400,000 \end{aligned}$	Offshore	Hydraulic dredge Truck hauled	.		
Harrison County, Miss.	1951	40.2	25.0	5,355,000	7,004,000	Offshore	Hydraulic dredge	1,472,500	1,926,000	1973
Corpus Christi, Tex.	1978	2.3	1.4	646,000	845,000	Bay deposits Upland deposits	Hydraulic dredge Truck hauled			
Doheny Street Beach, Calif.	1966	1.8	1.1	714,100	934,000	Upland deposits	Truck hauled	17,600	23,000	Estimated annually
Oceanside, Calif.	1963	5.3	3.3	2,905,300	3,800,000	Oceanside smallcraft harbor	Hydraulic dredge			
Redondo Beach, Calif.	1968	2.4	1.5	1,075,000	1,406,000	Offshore	Hydraulic dredge			
San Buenaventure Street Beach, Calif.	1967	3.7	2.3	674,300	882,000	Ventura Harbor	Hydraulic dredge			1975
Sunset Beach Surfside, Calif.	1971	2.8	1.7	4,865,600	6,364,000	Offshore to Feeder Beach	Hydraulic dredge			
Newport Beach, Calif.	1973	3.7	2.3	1,530,600	2,002,000	Offshore	Hydraulic dredge	688,100	900,000	1969
Ediz Hook, Port Angeles, Wash.	1977	4.8	3.0	68,800	90,000	$\underline{\text { Upland gravel }}$	Truck hauled			

Although samples taken from the beach after construction may not be entirely indicative of the characteristics of the native sand, they do represent to some extent the borrow material after it has been subjected to wave action, presumably typical of the wave climate associated with sorting on the natural beach. Samples taken from the original borrow material and from the active beach profile in May 1967 were therefore used to estimate the amount of material lost from the original fill as a result of the sorting action.

Using the 1967 beach as the native beach, the standard deviations, $\sigma_{\phi b}$ and $\sigma_{\phi n}$, of the borrow and native materials are 1.28 and 0.91 , respectively. The phi means, $M_{\phi b}$ and $M_{\phi n}$, of the borrow and native materials are 0.88 and 1.69 , respectively. Using the older method of Krumbein and James (1965), the upper bound of the fill factor was computed to be 2.1 , indicating that for every cubic meter of material on the active profile in 1967 not more than 2.1 cubic meters of borrow material should have been placed. Because the native beach material was not adequately sampled to develop the characteristics of the grain-size distribution, no further attempt is made to compare the project results with the procedures described in Chapter 5, Section III, 3, c.

In April 1965, approximately $2,012,300$ cubic meters $(2,632,000$ cubic yards) of borrow material were placed along the 4300 meters (14,000 feet) of Carolina Beach (Vallianos, 1970). Figure 6-17 shows the before-and-after conditions of the beach. The fill consisted of a dune having a width of 7.6 meters (25 feet) at an elevation of 4.6 meters (15 feet) above mean low water (MLW), fronted by a 15 -meter-wide (50 foot) berm at an elevation of 3.7 meters (12 feet) above MLW. Along the northernmost 1,100 meters (3,700 feet) of the project, (Fig. 6-18), the berm was widened to 21 meters (70 feet) to provide a beach nourishment stockpile.

Following construction, rapid erosion occurred along the entire length of the beach fill. Initial adjustments were expected based on the use of a fill factor of 2.1 based on Krumbein and James (1965) criteria. This resulted in an excess of $1,032,000$ cubic meters ($1,350,000$ cubic yards) of fill being placed on the beach to account for the unsuitability of part of the borrow material. However, the actual rates of change, particularly those evidenced along the onshore section of the project, were much greater than was originally anticipated considering that all the fill had not been subjected to winnowing by wave action.

In the first 2 years, erosion persisted at Carolina Beach along the entire length of the fill. The erosion along the southern 3,000 meters (10,000 feet) of the project was less than that along the northern 1,200 meters (4,000 feet).

During the period 1965-67, approximately 544,400 cubic meters (712,000 cubic yards) of the $1,263,000$ cubic meters ($1,652,000$ cubic yards) initially placed on the southern 3,000 -meter section moved offshore to depths seaward of the 7 -meter contour. Although this loss was about 43 percent of the total original fill placed, in terms of fill protection, it was as planned considering the suitability of the borrow material. Beach changes resulted in a $25-$ meter (82-foot) recession of the high water line (HWL) and the loss of the horizontal berm of the design profile. By the end of the second year, the southern 3,000 linear meters of project was stabilized.

In the first 2 years after the initial placement of 749,300 cubic meters (980,000 cubic yards) of fill along the 1200 -meter northern section of the project, beach changes were greater than those in the longer, southern section. Although about 420,500 cubic meters (550,000 cubic yards) of fill was lost from the active profile, amounting to a 56 -percent reduction in the total inplace fill, this only exceeded the anticipated winnowing loss by about 9 percent. By March 1967, the HWL along this section receded 43 meters (140 feet), resulting in the complete loss of 460 linear meters (1,500 linear feet) of original fill and the severe loss of an additional 360 meters (1,200 feet) of fill. This erosion progressed rapidly in a southward direction and threatened the more stable southern section of the project.

In March 1967, emergency measures were taken. The north end of Carolina Beach was restored by placing about 275,000 cubic meters (360,000 cubic yards) of fill and by building a $123-m e t e r$ (405 foot) groin near the north end. The groin was necessary because there was a reversal in the predominant direction of the longshore transport at the north end. In the next year, approximately 155,200 cubic meters (203,000 cubic yards) of emergency fill eroded, and most of the shoreline returned to about normal configuration before the emergency work. The shoreline immediately south of the groin, for a distance of about 120 meters (400 feet), remained nearly stable, and the loss of emergency fill along this small segment was about 42 percent less than the loss along the remaining emergency section.

Survey records from 1938 to 1957 (reported in the original project report) show that the average annual recession rate was about 0.3 meter (1 foot) per year, with a short-term maximum rate of 0.9 meter (2.8 feet) from 1952 to 1957, when the area had been exposed to four major hurricanes. The annual loss of material for the entire active profile was estimated to be about 10 cubic meters per linear meter (4 cubic yards per linear foot).

During the 2 years following the fill, the effects of shore processes were radically different from processes determined from historical records. During the periods April 1965 to April 1966 and April 1966 to April 1967, the shoreline receded 20 and 5 meters (67 and 15 feet), respectively, with corresponding losses of 283,000 and 261,500 cubic meters (370,000 and 342,000 cubic yards). In the third year, April 1967 to April 1968, a marked change occurred in fill response. The rate of shoreline recession dropped to 1.5 meters (5 feet) per year, and the volume change of material amounted to a slight accretion of about 13,000 cubic meters (17,000 cubic yards). Surveys in 1969 indicated that the project was in nearly the same condition as it was in 1968.

Rapid recession of the Carolina Beach shoreline during the first 2 years was a result of the profile adjustment along the active profile which terminates at depths between -7 and -9 meters (-22 and -30 feet) MLW, as well as net losses in volume resulting from the natural sorting action displacing the fine material to depths seaward of the active profile. The foreshore and nearshore design profile slope of 1 on 20 was terminated at a depth of 1.2 meters (4 feet) below MLW. The adjusted project profile of April 1968 shows the actual profile closing at a depth of about 7 meters below MLW, with a characteristic bar and trough system. Thus, displacement of the initial fill with the accompanying reduction of the beach design section resulted from a
normal sorting action and the reestablishment of the normal profile configuration.

Further protective action was completed on Carolina Beach in December 1970. A 340 -meter (1,100 -foot) rubble-mound seawall was constructed, extending southward from the northern limit of the project. At the same time 264,500 cubic meters (346,000 cubic yards) of fill, obtained from the sediment deposition basin in Carolina Beach Inlet, was placed along the northern 1200 meters of the project. This was followed up by the placement of 581,000 cubic meters (760,000 cubic yards) of fill along the southern 3500 meters (11,400 feet) of beach. Work on the southern section was completed in May 1971, and the beach-fill material was obtained from a borrow area in the Cape Fear River. The rubble-mound seawall was extended an additional 290 meters (950 feet) southward, with the work being completed in September 1973. This brought the total length of the seawall to 625 meters (2,050 feet).

Progressive erosion along the north end of the project and the occurrence of two "northeasters" during December 1980 resulted in the partial destruction and condemnation of about 10 homes immediately south of the southern end of the seawall. Non-Federal interests placed large sandfilled nylon bags (emergency protection devices) along 230 meters (750 feet) of the shoreline to prevent any further damage to upland property.

During May 1981, 230,000 cubic meters (300,000 cubic yards) of fill from Carolina Beach Inlet and 76,500 cubic meters (100,000 cubic yards) from the Atlantic Intercoastal Waterway was placed on the northern end of the project as an emergency measure. Present plans call for placement of $2,900,000$ cubic meters ($3,800,000$ cubic yards) of fill to be obtained from an upland borrow area adjacent to the Cape Fear River. This work was scheduled for spring 1982. The photo in Figure 6-18 shows the condition of Carolina Beach in 1981. The view is facing southward from the northern fishing pier (approximately the same as Fig. 6-17).
b. Redondo Beach (Malaga Cove), California (Fisher, 1969; U.S. Army Engineer District, Los Angeles, 1970; Hands, in preparation, 1985). An authorized beach restoration project at Redondo Beach, California, provided another opportunity to use an offshore sand source (see Figs. 6-21 and $6-22$). The availability of sand below the 9 -meter contour immediately seaward of the project was investigated in two stages. The first stage, a geophysical survey with an acoustical profiler indicated that enough sand was available for the project. In the second stage, core samples were obtained from the ocean by use of a vibrating core-extraction device. An analysis of the core samples verified an offshore sand source of acceptable quantity and quality. This source covered an area 2.3 kilometers (1.4 miles) long by 0.8 kilometer (0.5 mile) wide about 340 meters offshore (shoreward limit). It would produce $1,900,000$ cubic meters ($2,500,000$ cubic yards) of sand if it could be worked to a depth 16 meters (52 feet) below mean low low water (MLLW) between the 9to 18 -meter-depth (30 - to 60 -foot) contours. An additional $1,900,000$ cubic meters of sand could be recovered by extending the depth of the excavation to

Before restoration

(Sept. 1968)
After restoration
Figure 6-21. Protective beach, Redondo Beach, California (photos courtesy of Shellmaker Corporation).

Figure 6-22. Map of protective beach, Redondo Beach, California.
18 meters below MLLW. The median diameter of the beach sand was 0.5 millimeter; the median diameter of the offshore sand ranged from 0.4 to 0.7 millimeter. The offshore sand was considered an excellent source of material for beach replenishment. Several land sources were also investigated and found suitable in quantity and quality for the project.

Bids received in August 1967 for land hauling or ocean dredging ranged from $\$ 1.40$ per cubic meter ($\$ 1.07$ per cubic yard) to more than $\$ 2.60$ per cubic meter ($\$ 2.00$ per cubic yard). A contract was awarded to obtain the sand from the ocean source. The contractor used a modified 40-centimeter-diameter (16inch) hydraulic pipeline dredge, with a water-jet head on the end of a $27-$ meter (90 -foot) ladder. Although the water-jet technique had been used in excavating channels, filling and emptying cofferdams, and prospecting for minerals in rivers, its application to dredging in the ocean appears to be
unique. Ultimately, the dredge operated in seas up to 1.5 meters; when the seas exceeded 2 meters (6 feet), it proceeded to Redondo Harbor for shelter. Of particular interest in this project is the use of a pipeline dredge in a high wave energy coastal area. This area is subject to high-energy waves with little advance warning. These waves can quickly exceed the operating conditions of the dredge.

The dredge was held in position with its beam to the sea by an arrangement of the stern and bowlines. On the end of the dredge ladder was a combination head that provided both cutting and suction action. The force to lift the suspended material was provided by a suction pump in the dredge well, assisted by water jets powered by a separate 185-kilowatt (250-horsepower) pump. Sand was removed by working the head down to the bottom of the cut and keeping it in that position until the sandy material stopped running to the head. The head was then raised, and the dredge would pivot about 12 meters (40 feet) to the next position in the cutting row, where the process would be repeated. The dredge could cut a row 76 meters (250 feet) wide. At the completion of a row, the dredge was moved ahead on its lines about 12 meters for the next row cut. For most of the Redondo Beach project it was possible to excavate to -17 to -20 meters (-55 to -65 feet) with a cutback of 6 to 9 meters (20 to 30 feet). This is desirable for high production because it minimizes moving and swinging of the dredge.

The sand slurry was transported ashore through a combination pontoon and submerged line. The pontoon line was a 40 -centimeter-diameter pipe supported in 18 -meter lengths by steel pontoons. The submerged steel pipeline was joined to the floating line by a flexible rubber hose. As the beach fill progressed, the submerged line was moved by capping the shore end of the discharge and then pumping water out of the line. This created a floating pipeline that was towed to the next discharge position. As pumping resumed, the pipeline filled and sank to the bottom.

The fill was accomplished by a double-pipe system. The system consisted of a yoke attached to the discharge line and, by use of a double-valve arrangement, the discharge slurry was selectively distributed to either one pipe or the other, or to both pipes simultaneously. The beach was built by placing the first discharge pipe at the desired final fill elevation, in this case at +3.7 meters MLLW, and pumping until the desired elevation was reached. By alternating between the two discharge lines, the beach width of 60 meters (200 feet) was built to the full cross section as they advanced. The final placement (see Fig. 6-21) totaled 1.1 million cubic meters (1.4 million cubic yards) at a cost of $\$ 1.5$ million. Between 3000 and 11,500 cubic meters (4,000 and 15,000 cubic yards) per day were placed on the beach, averaging 6,000 cubic meters (8,000 cubic yards) per day. The work was completed in October 1968.

A substantial reduction in beach width occurred during the first year. Some of the fill material was transported onto the backshore above the +3.7meter MLLW contour. More material was transported offshore. While these initial changes did reduce the beach width, they also increased beach stability, and the rate of retreat dropped significantly in subsequent years. A recent study (Hands, in preparation, 1985) documents the long-term stability of the fill material at Redondo Beach. No additional maintenance material has been placed on the beach to date (1981), and after 12 years much of the
original fill material remains on the upper beach. During this time, the 1968 artificial borrow pit, which parallels the beach about 430 meters (1,400 feet) from shore, has shoaled to about half its original depth with sand moving in from deeper water. The position of the borrow zone, just seaward of the 9meter MLLW contour, was thus well chosen for this site as it is beyond the zone of cyclic onshore and offshore sand transport of beach material. Large volumes of sand are transported offshore at Redondo Beach during storms and particularly during the winter season, then returned by natural onshore transport during summer swells. The offshore borrow pit is far enough seaward so that it does not trap this beach sand or interfere with its cyclic exchange between the beach and the nearshore profile.

This was the first project in the United States where a hydraulic pipeline dredge was operated successfully in a high wave energy coastal area. Although highly successful in this project, this procedure has a critical limitation--the necessity for a nearby harbor. The experience gained on this project and the hopper-dredge operation at Sea Girt, New Jersey (Mauriello, 1967; U.S. Army Engineer District, Philadelphia, 1967) provided the techniques for many subsequent beach nourishment projects that utilized offshore sand deposits.
c. Dade County, Florida (U.S. Army Engineer District, Jacksonville, 1975). The Dade County Beach Erosion and Hurricane Protection Project, which includes Miami beach, was designed to provide beach nourishment and storm surge protection for one of the most highly developed beach-front areas on the Atlantic coast. Erosion, greatly accelerated by manmade structures and modifications, had reduced the beach along this part of the barrier island to the point where ocean waves often reached the many protective seawalls built by hotel and private property owners.

The project includes about 16.1 kilometers (10 miles) of shore between Government Cut to the south and Bakers Haulover Inlet (see Figs. 6-23 and $6-24$). The plan called for an initial placement of 10.3 million cubic meters (13.5 million cubic yards) of beach-fill material. This placement provided a dune 6 meters wide at 3.5 meters (11.5 feet) above MLW and a dry beach 55 meters (180 feet) wide at an elevation 3 meters (9 feet) above MLW, with natural slopes as shaped by the wave action. At Haulover Beach Park the plan provided a level berm 15 meters wide at elevation 3 meters above MLW with natural slopes. In addition, the project provides for periodic beach nourishment to compensate for erosion losses during the first 10 years following the initial construction. The nourishment requirements are estimated to be at the annual rates of 161,300 cubic meters (211,000 cubic yards) of material. Nourishment would be scheduled at 5 -year intervals, or as needed. The estimated project costs of about $\$ 67$ million (1980 dollars), with the Federal share at 58.7 percent, include the 10 -year beach nourishment.

In July 1975, the city of Bal Harbor initiated the project by the placement of $1,242,400$ cubic meters ($1,625,000$) cubic yards) of beach fill over a 1.37-kilometer ($0.85-\mathrm{mile}$) segment of shore fronting the city. In addition, the south jetty of Bakers Haulover Inlet was extended to a total length of about 245 meters (800 feet).

Because of the project size, the remaining 15.53 kilometers (9.65 miles)

(Feb. 1978)
Before restoration

(Oct. 1979)
After restoration
Figure 6-23. View of protective beach facing north from 48th Street, Dade County, Florida.

Figure 6-24. Project area depicting five phases of beach restoration, Dade County, Florida.
of shore was divided into five segments or phases; each was to be handled by a separate contract (see Fig. 6-24).

The phase I contract included the beach between 96 th and 80 th Streets at Surfside and about 0.8 kilometer of beach at Haulover Beach Park for a total of 4.35 kilometers (2.7 miles). A total estimate of $2,248,000$ cubic meters ($2,940,000$ cubic yards) of beach-fill material was placed. Work began on this phase in May 1977 and had to be discontinued in October 1977 because of rough seas, which normally occur during the winter months. Work resumed in June 1978, with contract completion in November 1978.

The phase II contract covered the 2.25 kilometers (1.4 miles) of Dade County Beach between 80 th and 83 rd Streets, the northern part overlapping the southern end of the first contract. This overlapping was done in all phases to replace the losses experienced at the downdrift segment of the prior contract during the time between contracts. The phase II contract called for placement of $1,170,000$ cubic meters ($1,530,000$ cubic yards) of beach fill, and after a delayed start, work began in August 1978 at 63 rd Street and proceeded to the north. Prior to termination for the winter months, 56 percent of the beach included under this contract had been placed. The remaining sections were completed during the 1979 dredging season.

The phase III contract involved the placement of $2,429,000$ cubic meters ($3,177,100$ cubic yards) of beach-fill material along 3.4 kilometers (2.1 miles) between 83rd and 86th Streets (see Fig. 6-23). In an attempt to complete this contract in one dredging season, a part of the work was subcontracted. Two dredges, the 70 -centimeter (27-inch) dredge, Illinois, and the 80 -centimeter (32-inch) dredge, Sensibar Sons, worked simultaneously on different sections of the beach. However, operations had to be discontinued for a month beginning in late August because of Hurricane David and persistent rough sea conditions. Dredging resumed for 2 weeks before termination for the winter season and was again resumed in July 1980. The contract was completed in October 1980.

The phase IV contract called for placement of $1,682,000$ cubic meters ($2,200,000$ cubic yards) of fill on the beach, which extended from 36 th to 17 th Streets, a 2.6 -kilometer ($1.6-\mathrm{mile}$) length. An added requirement of this contract was the removal of all rock greater than 2.5 centimeters (1 inch) in diameter. To accomplish this, the contractor built a three story grizzly-grid rock separator on the beach. Any rock greater than 2.5 centimeters in diameter was either stockpiled and hauled offsite or passed through a centrifugal rock crusher. The crushed rock was conveyed and remixed with the screened dredge slurry. The screened beach-fill material was then pumped to the outfall.

A booster pump was necessary because of the long distance between the borrow and the fill areas and the utilization of the rock screening device. The dredging associated with this contract began in May 1980 and was completed in December 1981. Approximately $1,426,700$ cubic meters ($1,866,000$ cubic yards) of material was placed on the beach.

The phase V contract called for the placement of $1,526,000$ cubic meters ($1,996,000$ cubic yards) of beach fill along the remaining 2.9 kilometers (1.8 miles) of the project from 17th Street to Government Cut. This phase began in

June 1981 and was 80 percent completed by December 1981. During this phase a hopper dredge and a hydraulic pipeline dredge were employed.

Originally, it was intended to obtain beach-fill material from borrow areas located in back of the barrier beach in Biscayne Bay. Prior to beginning construction, the borrow area was relocated to the offshore areas to avoid possible adverse environmental impacts on the Key Biscayne estuary.

A variety of geological investigations were made to locate and define several borrow areas seaward of Miami Beach. The borrow areas consisted of trenches that ran parallel to the shoreline 1,800 to 3,700 meters (6,000 to 12,000 feet) offshore between submerged ancient cemented sand dunes. These trenches, filled with sand composed of quartz, shell, and coral fragments, vary up to 300 meters (1,000 feet) or more in width and from 1 meter to more than 12 meters in depth. The borrow sands generally have a high carbonate (shell) content. The sand size ranges from fine to coarse, with some silty fines generally present. Shells and coral fragments (gravel size to cobble size) are relatively common. The bulk of the sand was in the fine- to mediumsize range. The silty fines form a small percent of the total and are within acceptable limits. The quartz present is usually of fine-grain size while the larger sizes are composed of locally derived shell and coral fragments. The sand sizes generally are finer grained in the deposits that lie farther from shore and in deeper water. The dredged sand is equal to or coarser than the beach sand.

The water depth in the borrow area is 12 to 18 meters (40 to 60 feet), and the excavation was accomplished primarily by either 70 -centimeter (27inch) diesel-electric dredges or by an 80 -centimeter (32 inch) electric dredge running off land-based power. These large dredges excavate material at depths greater than 27 meters. The average daily yield was about 19,000 cubic meters (25,000 cubic yards), with a maximum of 32,000 cubic meters (42,000 cubic yards) being obtained for a 24 -hour period.

When wave conditions exceeded 1 to 2 meters, the operations had to be curtailed due to the breaking up of the floating pipeline and possibility of damaging the cutterhead and ladder. For these reasons, dredging was conducted only during the calm season from the end of May to mid-October.

One problem area encountered during the project was the existence of a small percentage (usually less than 5 percent) of stones in the beach-fill material. Until the phase IV contract, the elimination of all stones had been considered impractical. Therefore, removal of stones greater than 5 centimeters (2 inches) in diameter was required only in the upper 30 centimeters (12 inches) of the surface. This was accomplished using a machine originally designed for clearing stones, roots, and other debris from farmland. Dade County has purchased one of these machines and also two smaller versions for conducting an active beach maintenance program.

The phase IV contract requirement to remove all stones larger than 2.5 centimeters in diameter was prompted by the problems involved in removing stones deposited subaqueously, which tend to concentrate in the nearshore trough. Several methods are being used to relieve this problem. This was not a problem in the phase IV and phase V contract areas.

The completed part of the beach has functioned effectively for several years, including the period when exposed to Hurricane David in 1979.

IV. SAND DUNES

Foredunes are the dunes immediately behind the backshore (see Ch. 4, Sec. VI and Ch. 5, Sec. IV). They function as a reservoir of sand nourishing beaches during high water and are a levee preventing high water and waves from damaging the backshore areas. They are valuable, nonrigid shore protection structures created naturally by the combined action of sand, wind, and vegetation, often forming a continuous protective system (see Fig. 6-25).

(1976)

Figure 6-25. Foredune system, Padre Island, Texas.

1. Sand Movement.

Winds with sufficient velocity to move sand particles deplete the exposed beach by transporting sand in the following three ways.
(a) Suspension: Small or light grains are lifted into the airstream and are blown appreciable distances.
(b) Saltation: Sand particles are carried by the wind in a series of short jumps along the beach surface.
(c) Surface Creep: Particles are rolled or bounced along the beach as a result of wind forces or the impact of descending saltating particles.

These natural transportation methods effectively sort the original beach material. Smaller particles are removed from the beach and dune area. Medium-sized particles form the foredunes. Larger particles remain on the beach. Although most sand particles move by saltation, surface creep may account for 20 to 25 percent of the moved sand (Bagnold, 1942).

2. Dune Formation.

Dune building begins when an obstruction on the beach lowers wind velocity causing sand grains to deposit and accumulate. As the dune builds, it becomes a major obstacle to the landward movement of windblown sand. In this manner, the dune functions to conserve sand in close proximity to the beach system. Foredunes are often created and maintained by the action of the beach grasses, which trap and stabilize sand blown from the beach.

Foredunes may be destroyed by the waves and high water levels associated with severe storms or by beachgrass elimination (induced by drought, disease, or overgrazing), which thereby permits local "blowouts." Foredune management has two divisions--stabilization and maintenance of naturally occurring dunes, and the creation and stabilization of protective dunes where they do not already exist. Although dunes can be built by use of structures such as sand fences, another effective procedure is to create a stabilized dune through the use of vegetation. Current dune construction methodology is given by Knutson (1977) and Woodhouse (1978).

3. Dune Construction Using Sand Fencing.

Various mechanical methods, such as fencing made of brush or individual pickets driven into the sand, have been used to construct a foredune (McLaughlin and Brown, 1942; Blumenthal, 1965; Jagschitz and Be11, 1966a; Gage, 1970). Relatively inexpensive, readily available slat-type snow fencing (Fig. 6-26) is used almost exclusively in artificial, nonvegetative dune construction. Plastic fabrics have been investigated for use as sand fences (Savage and Woodhouse, 1969). Satisfactory, but short-term, results have been obtained with jute-mesh fabric (Barr, 1966).

Field tests of dune building with sand fences under a variety of conditions have been conducted at Cape Cod, Massachusetts, Core Banks, North Carolina, and Padre Island, Texas. The following are guidelines and suggestions based on these tests and observations recorded over the years:
(a) Fencing with a porosity (ratio of area of open space to total projected area) of about 50 percent should be used (Savage and Woodhouse, 1969). Open and closed areas should be smaller than 5

Figure 6-26. Erecting snow-type sand fencing.
centimeters in width. The standard wooden snow fence appears to be the most practical and cost effective.
(b) Only straight fence alinement is recommended (see Fig. 6-27). Fence construction with side spurs or a zigzag alinement does not increase the trapping effectiveness enough to be economical (Savage, 1962; Knutson, 1980). Lateral spurs may be useful for short fence runs of less than 150 meters (500 feet) where sand may be lost around the ends (Woodhouse, 1978).
(c) Placement of the fence at the proper distance shoreward of the berm crest may be critical. The fence must be far enough back from the berm crest to be away from frequent wave attack. Efforts have been most successful when the selected fence line coincided with the natural vegetation or foredune line prevalent in the area. This distance is usually greater than 60 meters shoreward of the berm crest.
(d) The fence should parallel the shoreline. It need not be perpendicular to the prevailing wind direction and will function even if constructed with some angularity to sand-transporting winds.
(e) With sand moving on the beach, fencing with 50 -percent porosity will usually fill to capacity within 1 year (Savage and Woodhouse, 1969). The dune will be about as high as the fence. The dune slopes will range from about 1 on 4 to 1 on 7 , depending on the grain size and wind velocity.
(f) Dunes are usually built with sand fencing in one of two ways: (1) By installing a single fence and following it with additional

Figure 6-27. Snow-type sand fencing filled to capacity, Padre Island, Texas.
single-fence lifts as each fence fills (Fig. 6-28); or (2) by installing double-fence rows with the individual fences spaced about 4 times the fence height (4h) apart and following these with succeeding double-row lifts as each fills (Fig. 6-29). Single rows of fencing are usually the most cost-effective, particularly at the lower windspeeds, but double fences may trap sand faster at the higher windspeeds.
(g) Dune height is increased most effectively by positioning the succeeding lifts near the crest of an existing dune (see Fig. 6-30). However, under this system, the effective height of succeeding fences decreases and difficulties may arise in supporting the fence nearest the dune crest as the dune becomes higher and steeper.
(h) Dune width is increased by installing succeeding lifts parallel to and about 4 h away from the existing fence (Fig. 6-31). The dune may be widened either landward or seaward in this way if the dune is unvegetated.
(i) Accumulation of sand by fences is not constant and varies widely with the location, the season of the year, and from year to year. Fences may remain empty for months following installation, only to fill within a few days by a single period of high winds. In order to take full advantage of the available sand, fences must be observed regularly, repaired if necessary, and new fences installed as existing fences fill. Usually where appreciable sand is moving, a single, l.2-meter fence will fill within 1 year.
(j) The trapping capacity of the initial installation and succeeding lifts of a 1.2 -meter-high sand fence averages between 5 and 8 cubic meters per linear meter (2 to 3 cubic yards per linear foot).
(k) CERC's experience has been that an average of 6 man-hours are required to erect 72 meters (235 feet) of wooden, picket-type fence or 56 meters (185 feet) of fabric fence when a six-man crew has materials available at the site and uses a mechanical posthole digger.
(1) Junk cars should not be used for dune building. They are more expensive and less effective than fencing (Gage, 1970). Junk cars mar the beauty of a beach and create a safety hazard.

Figure 6-28. Sand accumulation by a series of four single-fence lifts, Outer Banks, North Carolina (Savage and Woodhouse, 1969).

Figure 6-29. Sand accumulation by a series of three double-fence lifts, Outer Banks, North Carolina (Savage and Woodhouse, 1969).

Figure 6-30. Sand fence dune with lifts positioned near the crest, Padre Island, Texas.

Figure 6-31. Sand fence dune with lifts positioned paralle1 to the existing fence, Padre Island, Texas.
(m) Fence-built dunes must be stabilized with vegetation or the fence will deteriorate and release the sand (Fig. 6-32). While sand fences initially trap sand at a high rate, established vegetation will trap sand at a rate comparable to multiple lifts of sand fence (Knutson, 1980). The construction of dunes with fence alone is only the first step in a twostep operation.

Fences have two initial advantages over planting that often warrant their use before or with planting: (a) Sand fences can be installed during any season and (b) the fence is immediately effective as a sand trap once it is installed. There is no waiting for trapping capacity to develop in comparison with the vegetative method. Consequently, a sand fence is useful to accumulate sand before planted vegetation is becoming established.

4. Dune Construction Using Vegetation.

a. Plant Selection. Few plant species survive in the harsh beach environment. The plants that thrive along beaches are adapted to conditions that include abrasive and accumulating sand, exposure to full sunlight, high surface temperatures, occasional inundation by saltwater, and drought. The plants that do survive are long-lived, rhizomatous or stoloniferous perennials with extensive root systems, stems capable of rapid upward growth through accumulating sand, and tolerance of salt spray. Although a few plant species

Figure 6-32. Sand fence deterioration due to exposure and storms.
have these essential characteristics, one or more suitable species of beach grasses occur along most of the beaches of the United States.

The most frequently used beach grasses are American beachgrass (Ammophila breviligulata) along the mid- and upper-Atlantic coast and in the Great Lakes region (Jagschitz and Be11, 1966b; Woodhouse and Hanes, 1967; Woodhouse, 1970); European beachgrass (Ammophila arenaria) along the Pacific Northwest and California coasts (McLaughlin and Brown, 1942; Brown and Hafenrichter, 1948; Kidby and Oliver, 1965; U.S. Department of Agriculture, 1967); sea oats (Uniola paniculata) along the South Atlantic and gulf coasts (Woodhouse, Seneca, and Cooper, 1968; Woodard, et al., 1971); panic grasses (Panicum amarum) and (P_{0} amarulum) along the Atlantic and gulf coasts (Woodhouse, 1970; Woodard, et al., 1971). Table 6-3 is a regional summary of the principal plants used for dune stabilization.
b. Harvesting and Processing. The plants should be dug with care so that most roots remain attached to the plants. The clumps should be separated into transplants having the desired number of culms (stems). Plants should be cleaned of most dead vegetation and trimmed to a length of about 50 centimeters (20 inches) to facilitate mechanical transplanting.

Most plants may be stored several weeks if their bases are wrapped with wet burlap, covered with moist sand, or placed in containers with 3 to 5 centimeters of fresh water. Survival of sea oats is reduced if stored more than 3 to 4 days. To reduce weight during transport, the roots and basal nodes may be dipped in clay slurry and the plants bundled and wrapped in

Table 6-3. Regional adaption of foredune plants. ${ }^{1}$

Major species	$\begin{gathered} \text { North } \\ \text { Atlantic } \end{gathered}$	South Atlantic	Gulf	North Pacific	South Pacific	Great Lakes
American beachgrass	1	1, 2	--	4	---	1
European beachgrass	--	---	--	1	1	4
Sea oats	--	3	3	---	---	--
Bitter panicum	3	1, 3	1	---	---	--
Saltmeadow cordgrass	4	4	4	---	---	--
American dunegrass	--	---	---	4, 6	4, 6	--
Secondary or regional species						
Seashore elder	--	6	6, 2	---	---	--
Bermuda grass	7	7	7	---	---	--
Knot grass or seashore paspalum	--	4	4	--	---	--
Ice plant	--	---	---	5, 2	5	--
Sand verbena	--	---	---	6	6	--
Beach bur	--	--	--	6	-	--
Wildrye	--	---	---	---	---	4
St. Augustine grass	--	7	7	---	---	--
Prairie sandreed	--	---	--	4	---	--
Beach morning glory	--	4	4	---	---	--
1 - Dominant planted species.						
2 - Part of region only.						
3 - Valuable in mixture.						
4 - Widely distributed, seldom planted.						
5 - Stabilization only.						
6 - Valuable, planting methods undeveloped.						
7 - Specialized use						

[^0]reinforced paper. Plants may be kept longer if refrigerated. Plants dug while dormant (winter) and held in cold storage at 1° to 3° Celsius may be used in late spring plantings.
c. Planting and Fertilization. Transplanting techniques for most species of beach grass are well developed. Transplanting is recommended for areas adjacent to the beach berm and for critical areas, such as sites subject to erosion. Most critical areas require densely spaced transplants to ensure successful stabilization. A mechanical transplanter mounted on a tractor is recommended for flat or moderate slopes (see Fig. 6-33). Steep and irregular slopes must be planted by hand. Table $6-4$ provides a tabular summary of planting specifications for beach grasses.

Figure 6-33. Mechanical transplanting of American beachgrass.

Table 6-4. Planting and fertilization summary by regions. ${ }^{1}$

Species	Planting				Fertilization	
	Date	Depth (cm)	Stems per hill	Spacing (cm)	First year	Maintenance
North Atlantic						
American beachgrass Bitter panicum	Feb. to Apr. Mar. to May	$\begin{aligned} & 20 \text { to } 35 \\ & 20 \text { to } 35 \end{aligned}$	$1 \text { to } 5$ 1	45 to 60 or graduated In mixture	$\begin{aligned} & 102-153 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \\ & 31-51 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5} \\ & 102-153 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \\ & 31-51 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5} \end{aligned}$	$1 / 3$ lst year to none 1/3 1st year to none
South Atlantic						
American beachgrass ${ }^{2}$	Nov. to Mar.	$20 \text { to } 30$	1 to 3	45 to 60 or graduated	$\begin{aligned} & 102-153 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \\ & 31-51 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5} \end{aligned}$	$\begin{aligned} & 31-51 \mathrm{~kg} / \mathrm{has} \\ & 1-\text { to } 3-\mathrm{yr} \text { intervals } \end{aligned}$
Bitter panicum	Mar. to June	$20 \text { to } 35$	1	45 to 60 or graduated	$\begin{aligned} & 102-153 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \\ & 31-51 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5} \end{aligned}$	$\begin{aligned} & 31-51 \mathrm{~kg} / \mathrm{ha} \\ & 1-\text { to } 3-\mathrm{yr} \text { intervals } \end{aligned}$
Sea oats	Feb. to Apr.	$25 \text { to } 35$	1	In mixture	$\begin{aligned} & 102-153 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \\ & 31-51 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5} \end{aligned}$	$\begin{aligned} & 31-51 \mathrm{~kg} / \mathrm{ha} \\ & 1-\text { to } 3-\mathrm{yr} \text { intervals } \end{aligned}$
Saltmeadow cordgrass	Feb. to May	15 to 30	5 to 10	45 to 60 or graduated	$\begin{aligned} & 102-153 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \\ & 31-51 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5} \end{aligned}$	$\begin{aligned} & 31-51 \mathrm{~kg} / \mathrm{ha} \\ & 1-\text { to } 3-\mathrm{yr} \text { intervals } \end{aligned}$
Gulf						
Bitter panicum Sea oats	Feb. to June Jan. to Feb.	$\begin{aligned} & 20 \text { to } 30 \\ & 20 \text { to } 35 \end{aligned}$	1 1	60 to 90 or graduated 60 to 90 or graduated	$102 \mathrm{~kg} / \mathrm{ha} \mathrm{N}$ $31 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5}$ $102 \mathrm{~kg} / \mathrm{ha} \mathrm{N}$ $31 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5}$ 25	According to growth According to growth
North Pacific						
European beachgrass American beachgrass	Apr ${ }^{3}$ Jan. to Apr.	$\begin{aligned} & 25 \text { to } 35 \\ & 25 \text { to } 35 \end{aligned}$	$\begin{aligned} & 3 \text { to } 5 \\ & 1 \text { to } 3 \end{aligned}$	45 or graduated 45 or graduated	$\begin{aligned} & 41-61 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \\ & 41-61 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \end{aligned}$	According to growth According to growth
South Pacific						
European beachgrass Ice plant (stabilization only)	$\begin{aligned} & \text { Spring }^{3} \\ & \text { Spring }^{4} \end{aligned}$	$\begin{aligned} & 25 \text { to } 35 \\ & 10 \text { to } 15 \end{aligned}$	$3 \text { to } 5$ 1	45 or graduated 60 or broadcast	$\begin{aligned} & 41-61 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \\ & 41-61 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \end{aligned}$	According to growth According to growth
Great Lakes						
American beachgrass	Feb. to May	20 to 35	1 to 3	45 to 60 or graduated	$\begin{aligned} & 102-153 \mathrm{~kg} / \mathrm{ha} \mathrm{~N} \\ & 31-51 \mathrm{~kg} / \mathrm{ha} \mathrm{P}_{2} \mathrm{O}_{5} \\ & \text { and } \mathrm{K}_{2} \mathrm{O} \end{aligned}$	According to growth

${ }^{1}$ Woodhouse (1978).
${ }^{2}$ carolina coasts only.
${ }^{3}$ Early spring is best when temperatures are below 15° Celsius.
4 Ground should be cool and wet.
Seeding is practical only when protection can be provided from eroding and drying winds by mulching or frequent irrigation, and is therefore not applicable to most beach areas. Beach-grass seeds are not generally available from commercial sources, and must be wild harvested during the fall for spring seeding.

Where field tested, beach grasses have responded to supplemental nutrients by increased foliage production. This in turn provides greater sand-trapping capacity. Rates of fertilizer are provided in Table 6-4. Only American beachgrass should be routinely fertilized the second growing season with 56 kilograms per hectare (50 pounds per acre) of fertilizer (nitrogen) in April and again in September. Other species should be fertilized if overall
growth or survival is poor or if plants do not appear healthy. In general, only areas of poor plant growth will require fertilization. During the third growing season, fertilizer can be applied as required to encourage growth. However, sea oats are not responsive to fertilizer after the second season. The response of beach grasses to slow-release fertilizers has been varied and results are inconclusive (Augustine, et al., 1964; Hawk and Sharp, 1967; Woodhouse and Hanes, 1967).
d. Disease and Stress. Beach grasses vary in their tolerance to drought, heat, cold, disease, and parasites. Plantings of a species outside its natural geographic zone are vulnerable during periods of environmental stress. American beachgrass is more susceptible to scale infestation when exposure to sandblasting is reduced. Deteriorating stands of American beachgrass, due to scale infestation (Eriococcus carolinea), have been identified from New Jersey to North Carolina (Campbell and Fuzy, 1972). South of its natural geographic zone (Nags Head, North Carolina), American beachgrass is susceptible to heat (Seneca and Cooper, 1971), and a fungal infection (Marasius blight) is prevalent (Lucas, et al., 1971).

South of Virginia, mixed species plantings are desirable and necessary. The slow natural invasion (6 to 10 years) of sea oats to American beachgrass dunes (Woodhouse, Seneca, and Cooper, 1968) may be hastened by mixed species plantings. Thus, with better vegetation cover, the chance of overtopping during storms is reduced.

Sea oats and panic grass occur together throughout much of their natural geographic zone. Mixed plantings of sea oats and beach grass are recommended since they produce a thick cover and more dune profile.
e. Planting Width. Plant spacing and sand movement must be considered in determining planting width. When little sand is moved for trapping, and plant spacing is dense, nearly all sand is caught along the seaward side of the planting and a narrow-based dune is formed. If the plant spacing along the seaward side is less dense under similar conditions of sand movement, a wider based dune will be formed. However, the rate of plant growth limits the time in which the less dense plant spacing along the seaward side will be effective. The spacing and pattern should be determined by the characteristics of the site and the objective of the planting. Functional planting guidelines for the various geographic regions in the United States are given by Woodhouse (1978).

The following example illustrates the interrelationship of the planting width, plant spacing, sand volume, and rate of plant growth. American beachgrass planted on the Outer Banks of North Carolina, at 45 centimeters (18 inches) apart with outer spacing of 60 to 90 centimeters (24 to 36 inches), accumulated sand over a larger part of the width of the planting for the first two seasons. By the end of the second season, the plant cover was so extensive along the seaward face of the dune that most sand was being trapped within the first 8 meters (25 feet) of the dune.

American beachgrass typically spreads outward by rhizomatous (underground stem) growth, and when planted in a band parallel to the shoreline it will grow seaward while trapping sand. Thus a dune can build toward the beach from the original planting. Seaward movement of the dune crest in North Carolina
is shown in Figures 6-34 and 6-35. This phenomenon has not occurred with the sea oats plantings at Core Banks, North Carolina (Fig. 6-36), or at Padre Island, Texas (Fig. 6-37).

The rate of spread for American beachgrass has averaged about 1 meter per year on the landward side of the dune and 2 meters per year on the seaward slope of the dune as long as sand has been available for trapping (see Figs. 6-34 and 6-35). The rate of spread of sea oats is considerably less, 30 centimeters (1 foot) or less per year.

Figure 6-35 shows an experiment to test the feasibility of increasing the dune base by a sand fence in a grass planting. The fence was put in the middle of the 30 -meter-wide (100 -foot) planting. Some sand was trapped while the American beachgrass began its growth, but afterwards little sand was trapped by this fence. The seaward edge of the dune trapped nearly all the beach sand during onshore winds. The landward edge of the dune trapped the sand transported by offshore winds blowing over the unvegetated area landward of the dune.

Figure 6-34. American beachgrass dune, Ocracoke Island, North Carolina.

Figure 6-35. American beachgrass with sand fence, Core Banks, North Carolina.

Figure 6-36. Sea oats dune, Core Banks, North Carolina.

Figure 6-37. Sea oats dune, Padre Island, Texas.

Foredune restoration is most likely to succeed when the new dune coincides with the natural vegetation line or foredune line. The initial planting should be a strip 15 meters wide, parallel to the shore, and 15 meters landward of this line. It is essential that part of the strip be planted at a density that will stop sand movement sometime during the first year. If a natural vegetation or foredune line is not evident, restoration should begin at least 75 to 90 meters (250 to 300 feet) inland from the HWL. Where beach recession is occurring, the dune location should be determined from the average erosion rate and the desired dune life. Another 15 -meterwide strip may be added immediately seaward 4 to 5 years later if a base of 30 meters has not been achieved by natural vegetative spread.
f. Trapping Capacity. Periodic cross-sectional surveys were made of some plantings to determine the volume of trapped sand and to document the profile of the developing dune. Table 6-5 presents comparisons of annual sand accumulation and dune growth rates. The rates are averaged over a number of profiles under different planting conditions, and should be considered only as an indicator of the dune-building capability.

Table 6-5. Comparisons of annual sand accumulation and dune growth rates ${ }^{1}$

Location	Species	Crest growth		Sand accumulation		$\begin{gathered} \text { Growth } \\ \text { period } \\ (\mathrm{yr}) \end{gathered}$
		(m)	(ft)	($\mathrm{m}^{3} / \mathrm{m}$)	$\left(\mathrm{yd}^{3} / \mathrm{ft}\right)$	
Nauset Beach Cape Cod, Mass.	American beachgrass	0.3	0.9	8.3	3.3	7
Ocracoke Island, N.C.	American beachgrass	0.2	0.6	8.3^{2}	$3.3{ }^{2}$	10
Padre Island, Tex.	Sea oats and beachgrass	0.5 to 0.6	1.5 to 2.0	8.3 to 13.0	3.3 to 5.2	5
Clatsop Plains, Oreg.	European beachgrass	0.3	0.9	13.8	5.5	30

${ }^{1}$ After Knutson (1980).
${ }^{2}$ Three years growth.

The European beachgrass annual trapping rate on Clatsop Spit, Oregon, has averaged about 4 cubic meters (5 cubic yards). Although surveys were not taken until nearly 30 years after planting (Kidby and 01iver, 1965), the initial trapping rates must have been greater (see Fig. 6-38).

Figure 6-38. European beachgrass dune, Clatsop Spit, Oregon.

These rates are much less than the rates of vigorous grass plantings. Small plantings of 10 meters square (100 feet square) of American beachgrass that trap sand from all directions have trapped as much as 40 cubic meters per linear meter (16 cubic yards per linear foot) of beach in a period of 15 months on Core Banks, North Carolina (Savage and Woodhouse, 1969). While this figure may exaggerate the volume of sand available for dune construction over a long beach, it does indicate the potential trapping capacity of American beachgrass. Similar data for sea oats or panic grass are not available. However, observations on the rate of dune growth on Padre Island, Texas, following Hurricane Beulah (September 1967) indicate that the trapping capacity of sea oats and panic grass is greater than the annual rate observed for the planted dunes. This suggests that dune growth in most areas is limited by the amount of sand transported off the beach rather than by the trapping capacity of the beach grasses.

The average annual vertical crest growth, as indicated in Table 6-5, shows some variation over the range of test sites. However, in all cases the dune crest growth has been sufficient to provide substantial storm surge protection to the previously unprotected areas in back of the dune. This was evidenced on North Padre Island during Hurricane Allen in 1980. The storm surge at the location of the experimental dune building site has been estimated to be between 2 and 3 meters (8 and 10 feet). Although a substantial part of the dunes had eroded, they still provided protection from flooding in the areas landward of the dune. This area is undeveloped on North Padre Island (National Seashore), but the value of a healthy dune system can be readily appreciated.
g. Cost Factors. The survival rate of transplants may be increased by increasing the number of culms per transplant. This increase in survival rate does not offset the increase in cost to harvest multiculm transplants. It is less expensive to reduce plant spacing if factors other than erosion (such as drought) affect the survival rate.

Harvesting, processing, and transplanting of sea oats requires 1 man-hour per 130 hills, panic grass requires 1 man-hour per 230 hills. For example, a 15 -meter-wide, 1.6 -kilometer-long planting of sea oats on 60-centimeter centers requires about 500 man-hours for harvesting, processing, and transplanting if plants are locally available. Using a mechanical transplanter, from 400 to 600 hills can be planted per man-hour.

Nursery production of transplants is recommended unless easily harvested wild plants of quality are locally available. Nursery plants are easier to harvest than wild stock. Commercial nurseries are now producing American and European beachgrasses, panic grass, and sea oats. Some States provide additional information through their departments of conservation or natural resources. The Soil Conservation Service routinely compiles a list of commercial producers of plants used for soil stabilization.

V. SAND BYPASSING

The construction of jetties or breakwaters to provide safe navigation conditions at harbor entrances or tidal inlets along sandy coasts usually results in an interruption of the natural longshore transport of sand at the entrance or inlet. The resulting starvation of the downdrift beach can cause
serious erosion unless measures are taken to transfer or bypass the sand from the updrift side to the downdrift beaches.

Several techniques of mechanical sand bypassing have been used where jetties and breakwaters form littoral barriers. The most suitable method is usually determined by the type of littoral barrier and its corresponding impoundment zone. The five types of littoral barriers for which sand transfer systems have been used are illustrated in Figure 6-39. The basic methods of sand bypassing are as follows: fixed bypassing plants, floating bypassing plants, and land-based vehicles or draglines. Descriptions of selected projects illustrating sand bypassing techniques for various combinations of littoral barriers are presented in the following sections.

1. Fixed Bypassing Plants.

Fixed bypassing plants have been used at South Lake Inlet, Florida, and Lake Worth Inlet, Florida (both type I inlet improvements, see Fig. 6-39), and at Rudee Inlet, Virginia Beach, Virginia (type V inlet improvement).

In the past, in other countries, fixed bypassing plants were used at Salina Cruz, Mexico (U.S. Army Beach Erosion Board, 1951), and Durban, Natal, South Africa (U.S. Army Corps of Engineers, 1956). Both were located at breakwaters on the updrift sides of harbor entrances. The Salina Cruz plant rapidly became land-locked and was abandoned in favor of other methods of channel maintenance (U.S. Army Corps of Engineers, 1952, 1955). The Durban plant bypassed about 153,000 cubic meters (200,000 cubic yards) of sand per year from 1950 to 1954; afterward the amount decreased. Because of insufficient littoral drift reaching the plant, it was removed in 1959. No apparent reduction in maintenance dredging of the harbor entrance channel took place during the 9 years of bypassing operations. Starting in 1960, the material dredged from the channel was pumped to the beach to the north by a pump-out arrangement from the dredge with booster pumps along the beach.
a. South Lake Worth Inlet, Florida (Watts, 1953; Jones and Mehta, 1977). South Lake Worth Inlet, about 16 kilometers south of Palm Beach, was opened artificially in 1927 to provide increased flushing of Lake Worth. The dredged channel was stabilized by entrance jetties. The jetties caused erosion of the downdrift beach to the south, and construction of a seawall and groin field failed to stabilize the shoreline. A fixed sand bypassing plant began operation in 1937. The plant consisted of a 20 -centimeter (8 -inch) suction line, a 15-centimeter (6-inch) centrifugal pump driven by a 48.5-kilowatt (65 horsepower) diesel engine, and about 365 meters of 15 -centimeter discharge line that crossed the inlet on a highway bridge and discharged on the beach south of the inlet.

The original plant, with a capacity of about 42 cubic meters (55 cubic yards) of sand per hour, pumped an average of 37,000 cubic meters (48,000 cubic yards) of sand per year between 1937 and 1941. This partially restored the beach for more than a kilometer downcoast. During the next 3 years (194245) pumping was discontinued, and the beach south of the inlet severely eroded. The plant resumed operation in 1945, stabilizing the beach. In 1948 the plant was enlarged by installation of a centrifugal pump, a 205-kilowatt (275-horsepower) diesel engine, a 25-centimeter (10-inch) suction line, and

Type I: Jettied inlet

Type II. Inlet sand trap

Type III. Jettied inlet and offshore breakwater

Type IV: Shore-connected breakwater (Impounding zone at seaward end of breakwater)

Type V: Shore-connected weir breakwater or jetty (Impounding zone at shoreward end of breakwater)

Figure 6-39. Types of littoral barriers for which sand transfer systems have been used (Weggel, 1981a).
a 20 -centimeter discharge line. This plant yielded an average discharge of 75 cubic meters (100 cubic yards) per hour. The remainder of the littoral drift was transported by waves and currents to the offshore zone, the middle ground shoal, and the downdrift shore.

In 1967 the north jetty was extended and the bypassing plant was moved seaward (see Fig. 6-40). The current plant consists of a pump, a 300-kilowatt (400-horsepower) diesel engine, and a 30-centimeter-diameter suction line. The estimated discharge is 150 cubic meters (200 cubic yards) of sand per hour. During the period 1968 to 1976, the plant averaged 53,800 cubic meters (70,300 cubic yards) of bypassed material per year.

In addition to the fixed plant, a hydraulic pipeline dredge has also been used to bypass sand from the middle-ground shoals. Between 1960 and 1976, the average annual volume of bypassed dredge material was 20,000 cubic meters (26,000 cubic yards).
b. Lake Worth Inlet, Florida (Zermuhlen, 1958; Middleton, 1959; Jones and Mehta, 1977). Lake Worth Inlet, located at the northern limit of Palm Beach, was cut in 1918 and stabilized with bulkheads and jetties between 1918 and 1925. The fixed sand-bypassing plant began operation in 1958. The plant (see Fig. 6-41) consists of a 300 -kilowatt (400 -horsepower) electric motor and pump combination, a 30 -centimeter suction line, and twin 25 -centimeter discharge lines (added in 1967) which traverse the inlet on the channel bottom. A 240 -meter section of the submerged discharge line can be removed during maintenance dredging of the navigation channel. The system was designed to handle 15 percent solids at more than 60 percent efficiency. Design capacity was about 130 cubic meters (170 cubic yards) per hour. The plant can dredge within a 12 -meter sector adjacent to the north side of the plant to a depth of -3.7 meters MLW. A complex emergency flushing system, which was never used, was removed in 1971 because of high maintenance costs.

The average annual amount of bypassed material between 1958 and 1966 was 57,700 cubic meters (75,500 cubic yards) per year. In 1969 the groin to the north of the plant was removed. The original intent of the groin was to prevent the plant from bypassing too much material, which might cause the updrift beaches to recede. However, the effect of the groin was to impede the movement of sand toward the pumping area. After removal of the groin, the average annual amount of bypassed material increased to about 99,000 cubic meters (130,000 cubic yards) per year during the period from 1969 to 1976. This estimate, based on an average discharge rate of 150 cubic meters per hour, represents about 60 percent of the estimated annual littoral drift.

In addition to the fixed bypassing plant, material dredged during channel maintenance has been placed south of the inlet. In the 3 -year period from 1970 to 1973, a total of 227,000 cubic meters (297,000 cubic yards) was bypassed by hydraulic dredge.
c. Rudee Inlet, Virginia Beach, Virginia (Richardson, 1977). Rudee Inlet, immediately south and updrift of Virginia Beach, was essentially nonnavigable until 1952 when two short jetties were built and a channel was dredged. The channel immediately began to shoal with littoral material, and erosion occurred on the downdrift beaches. A fixed bypassing plant with a small capacity was installed in 1955 with little effect, and a floating

(Circa 1968)

ATLANTIC OCEAN

Figure 6-40. Fixed bypassing plant, South Lake Worth Inlet, Florida.

(Circa 1968)

ATLANTIC OCEAN

Figure 6-41. Fixed bypassing plant, Lake Worth Inlet, Florida.
pipeline dredge was added in 1956. The fixed plant was destroyed by a storm in 1962, and the inlet essentially closed, allowing the sand to bypass naturally. In 1968 the inlet was again improved with the construction of a jetty and a breakwater connected to the shore by a sand weir (see Fig. 6-42).

The weir jetty impoundment basin was never fully dredged initially, and the 25 -centimeter dredge operations were hampered by wave action. From 1968 to 1972, sand bypassing was achieved by dredging material from the channel and back bay and pumping it to the downdrift beaches. In 1972, 76,000 cubic meters (100,000 cubic yards) of sand was removed from the impoundment basin. By 1975, the basin had refilled with littoral material, and bypassing was once again performed as before by the 25-centimeter dredge. Also in 1975, an experimental semimobile bypassing system was installed to bypass sand from the weir impoundment basin to the downdrift beach.

This system consists of two jet pumps attached by flexible rubber hoses to the steel pipes, which are supported on pilings in the impoundment basin (see Fig. 6-42). The steel pipes are connected to the pumphouse where two centrifugal pumps, having a combined nominal capacity of 115 cubic meters (150 cubic yards) per hour, discharge through a 20 -centimeter pipe to the downdrift beaches. The jet pumps are pivoted about the ends of the steel pipes by cables from the shore. This enables the pumps to reach a large area of the impoundment basin.

During the first 6 months of operation, 60,400 cubic meters (79,000 cubic yards) of sand was bypassed from the impoundment basin by the jet-pump system, and approximately 23,000 cubic meters (30,000 cubic yards) was bypassed from the channel and impoundment basin by the floating dredge. Once operational procedures were established, the system could be successfully operated by a three-man crew in nearly all wave climates.

Since late 1975 the system has been owned and operated by local authorities who estimate the pumping capacity at 38 cubic meters (50 cubic yards) per hour and the effective pumping time at about 113 hours per month. The U.S. Army Engineer Waterways Experiment Station (WES) estimates the long-term pumping capacity at about 75 cubic meters per hour, assuming both pumps are operating. This estimate is based on the operating times from the first 6 months of operation. Using these two estimates as limits and assuming yearround operation, the system can pump between 51,800 and 103,700 cubic meters (67,800 and 135,600 cubic yards) per year. The estimated yearly littoral drift at Rudee Inlet is between 53,500 and 92,000 cubic meters (70,000 and 120,000 cubic yards).

2. Floating Bypassing Plants.

Sand bypassing has been achieved by floating plants at all five types of littoral barriers (Fig. 6-39). Those operations that are discussed and illustrated in this section are listed below:
(a) Type I: Jettied inlet--location at Port Hueneme, California (Fig. 6-43).
(b) Type II: Inlet sand trap-locations at Jupiter Inlet, Florida (Fig. 6-44), and at Sebastian Inlet, Florida (Fig. 6-45).

(Feb. 1980)

Figure 6-42. Fixed bypassing plant, Rudee Inlet, Virginia.

Figure 6-43. Sand bypassing, Port Hueneme, California.
(c) Type III: Jettied inlet and offshore breakwater--1ocation at Channel Islands Harbor, California (Fig. 6-46).
(d) Type IV: Shore-connected breakwater--locations at Santa Barbara, California (Fig. 6-47), and at Fire Island Inlet, New York (Fig. 6-48).
(e) Type V: Shore-connected weir breakwater or jetty--locations at Hillsboro Inlet, Florida (Fig. 6-49), Masonboro Inlet, North Carolina (Fig. 6-50), Perdido Pass, Alabama (Fig. 6-51), East Pass, Florida (Fig. 6-52), and at Ponce de Leon Inlet, Florida (Fig. 6-53).

Other floating dredge sand-bypassing projects, not illustrated in this section, include the following:
(a) Type II: Boca Raton Inlet, Florida (channel dredging).
(b) Type III: Ventura Marina, California.
(c) Type IV: Oceanside Harbor, California.
(d) Type V: Murrells Inlet, South Carolina.
a. Port Hueneme, California (Savage, 1957; Herron and Harris, 1967). A unique application of a floating pipeline dredge to a type I littoral barrier was made in 1953 at Port Hueneme, California. Construction of the port and protective jetties in 1940 interrupted the littoral drift, estimated by Herron (1960) to be transported at the rate of 612,000 to 920,000 cubic meters (800,000 to $1,200,000$ cubic yards) per year, by impoundment behind the west jetty and also by diverting the sand into the Hueneme Submarine Canyon, where it was permanently lost to the system. The result was severe erosion to the downdrift beaches.

In 1953 sand impounded by the updrift jetty was pumped across the harbor

(Sept. 1974)

Figure 6-44. Sand bypassing, Jupiter Inlet, Florida (Jones and Mehta, 1977).

(photo courtesy of University of Florida, 1976)

Figure 6-45. Sand bypassing, Sebastian Inlet, F1orida (Jones and Mehta, 1977).

(Photo was taken just after 2.3 million cubic meters of sand had been dredged from the trap, Sept. 1965.)

Figure 6-46. Sand bypassing, Channel Islands Harbor, California.

(July 1975)

Figure 6-47. Sand bypassing, Santa Barbara, California.

(Sept. 1969)

Figure 6-48. Sand bypassing, Fire Island Inlet, New York.

(Sept. 1974)

Figure 6-49. Sand bypassing, Hillsboro Inlet, Florida.

(May 1981)

Figure 6-50. Sand bypassing, Masonboro Inlet, North Carolina.

(Apr. 1969)

Figure 6-51. Sand bypassing, Perdido Pass, Alabama.

(Mar. 1972)

Figure 6-52. Sand bypassing, East Pass, Florida.

(Apr. 1971)

Figure 6-53. Sand bypassing, Ponce de Leon In1et, Florida, just south of Daytona Beach.
entrance to the downdrift beach through a submerged pipeline. The unique feature of this operation was that the outer strip (or seaward edge) of the impounded fillet was used to protect the dredge from wave action. Land equipment excavated a hole in the beach, which was enlarged to permit a large dredge to enter from the open sea.

Since it was necessary to close the dredge entrance channel to prevent erosion of the protective strip, water had to be pumped into the dredged lagoon. This problem might have been avoided had the proposed entry route from inside the harbor been used and kept open during phase I dredging (see Fig. 6-43).

After completing the phase I dredging (see Fig. 6-43), the floating plant then dredged the protective barrier by making diagonal cuts from the phase I area out to the MLLW line.

From August 1953 to June $1954,1,554,000$ cubic meters ($2,033,000$ cubic yards) of sand was bypassed to downdrift feeder beaches. Subsequent development updrift at Channel Islands Harbor, discussed below, provided periodic nourishment to the downdrift beaches southeast of Port Hueneme Harbor.
b. Channe1 Islands Harbor, California (Herron and Harris, 1967). This small-craft harbor was constructed in 1960-61 about 1.5 kilometers northwest of the Port Hueneme entrance (see Fig. 6-46). The type III littoral barrier consists of a 700 -meter-long (2,300 -foot) offshore breakwater, located at the 9 -meter-depth contour, and two entrance jetties. The breakwater is a rubblemound structure with a crest elevation 4.3 meters (14 feet) above MLLW. It traps nearly all the littoral drift, prevents losses of drift into Hueneme Canyon, prevents shoaling of the harbor entrance, and provides protection for a floating dredge. The sand-bypassing dredging operation transfers sand across both the Channel Islands Harbor entrance and the Port Hueneme entrance to the downdrift beaches (U.S. Army Engineer District, Los Angeles, 1957). The general plan is shown in Figure 6-46.

In 1960-61 dredging of the sand trap, the entrance channel, and the first phase of harbor development provided 4.6 million cubic meters (6 million cubic yards) of sand. Since the initial dredging, the sand trap has been dredged 10 times between 1963 and 1981, with an average of $1,766,000$ cubic meters ($2,310,000$ cubic yards) of sand being bypassed during each dredging operation. The 22.2 million cubic meters (29 million cubic yards) bypassed since operations began has overcome the severe erosion problem of the beaches downdrift of Port Hueneme.
c. Jupiter Inlet, Florida (Jones and Mehta, 1977). The type II sand bypassing method consists of dredging material from shoals or a sand trap located in the protected waters of an inlet or harbor entrance and discharging the spoil onto the downdrift beaches.

Jupiter Inlet is an improved natural inlet located in the northern part of Palm Beach County, Florida. Maintenance dredging of the inlet has been performed since the early 1940's, but bypassed amounts before 1952 are unknown. Between 1952 and 1964 dredging of the inlet produced approximately 367,900 cubic meters (481,200 cubic yards) of sand which was bypassed to the downdrift beaches south of the inlet. Since 1966 most maintenance dredging
has taken place in the sand trap area (see Fig. 6-44). Between 1966 and 1977 the sand trap was dredged six times for a total of 488,500 cubic meters (639,000 cubic yards), which results in an annual average of about 44,400 cubic meters (58,000 cubic yards) of bypassed sand.
d. Sebastian Inlet, Florida (Jones and Mehta, 1977). Sebastian Inlet, 72 kilometers (45 miles) south of Cape Canaveral, is a manmade inlet that was opened in 1948 and subsequently stabilized. The most recent jetty construction occurred in 1970. This inlet differs from most inlets on sandy coasts because the sides of the channel are cut into rock formations. This has limited the inlet cross-sectional area to about half the area that would be expected for the tidal prism being admitted. Consequently, the inlet currents are exceptionally strong and the littoral drift is carried a considerable distance into the inlet.

In 1962 a sand trap was excavated in a region where the inlet widens and the currents decrease sufficiently to drop the sediment load (see Fig. 6-45). This initial dredging produced 210,000 cubic meters (274,600 cubic yards) of sand and rock, which was placed along the inlet banks and on the beach south of the inlet. The trap was enlarged to 15 hectares (37 acres) in 1972 when 325,000 cubic meters (425,000 cubic yards) of sand and rock was removed. In 1978 approximately 143,400 cubic meters (187,600 cubic yards) of sand and 75,600 cubic meters (98,900 cubic yards) of rock were excavated, with the sand being bypassed to the downdrift beach.
e. Santa Barbara, California. The Santa Barbara sand-bypassing operation was necessitated by the construction of a 850-meter (2,800 -foot) breakwater, completed in 1928, to protect the harbor (see Fig. 6-47.) The breakwater resulted in accretion on the updrift side (west) and erosion on the downdrift side (east). Bypassing was started in 1935 by hopper dredges which dumped about 154,400 cubic meters (202,000 cubic yards) of sand in 7 meters of water about 300 meters offshore. Surveys showed that this sand was not moved to the beach. The next bypassing was done in 1938 by a pipeline dredge. A total of 447,000 cubic meters (584,700 cubic yards) of sand was deposited on the feeder beach area, which is shown in Figure 6-47. This feeder beach was successful in reducing erosion downdrift of the harbor, and the operation was continued by periodically placing about $3,421,000$ cubic meters $(4,475,000$ cubic yards) of sand from 1940 to 1952 (Wiegel, 1959).

In 1957 the city of Santa Barbara decided not to remove the shoal at the seaward end of the breakwater because it provided additional protection for the inner harbor. A small floating dredge was used to maintain the channel and the area leeward of the shoal, which was occasionally overwashed during storm conditions. Wave and weather conditions limited the dredging operations to 72 percent of the time.

In order to reduce the overwashing of the shoal, the city installed a bulkhead wall along 270 meters (880 feet) of the shoal in 1973-74. The top elevation of the wall is 3 meters (10 feet) above MLLW. This caused the littoral drift to move laterally along the shoal until it was deposited adjacent to and into the navigation channel. Since that time an estimated 267,600 cubic meters (350,000 cubic yards) of material per year has been dredged from the end of the bar and the navigation channel. A part of this
material is used to maintain the spit, with the remainder being bypassed to the downdrift beaches.
f. Hillsboro Inlet, Florida (Hodges, 1955; Jones and Mehta, 1977). Hillsboro Inlet is a natural inlet in Broward County, Florida, about 58 kilometers (36 miles) north of Miami. A unique aspect of the inlet is a natural rock reef that stabilizes the updrift (north) side of the channel (see Fig. 6-49). The rock reef and jetties form what is called a sand spillway. Southward-moving littoral sand is washed across the reef and settles in the sheltered impoundment area where it is dredged and bypassed to the south beaches. A 20-centimeter hydraulic dredge, purchased by the Inlet District in 1959, operates primarily in the impoundment basin, but also maintains the navigation channel. The total quantity of sand bypassed between 1952 and 1965 was 589,570 cubic meters (771,130 cubic yards), averaging 45,350 cubic meters (59,300 cubic yards) per year.

The north and south jetties were rebuilt and extended during 1964-65, and the navigation channel was excavated to -3 meters MSL. Between 1965 and 1977 the dredge bypassed 626,000 cubic meters (819,000 cubic yards) of sand for an annual average of 52,170 cubic meters (68,250 cubic yards) per year.

This sand-bypassing operation is the origianl weir jetty, and it forms the basis for the type V bypassing concept.
g. Masonboro Inlet, North Carolina (Magnuson, 1966; Rayner and Magnuson, 1966; U. S. Army Engineer District, Wilmington, 1970.) This inlet is the southern limit of Wrightsville Beach, North Carolina. An improvement to stabilize the inlet and navigation channel and to bypass nearly all the littoral drift was constructed in 1966. This phase of the project included the north jetty and deposition basin. The jetty consisted of an inner section of concrete sheet piles 520 meters (1,700 feet) long, of which 300 meters is the weir section, and a rubble-mound outer section 580 meters (1,900 feet) long. The elevation of the weir section (about midtide level) was established low enough to pass the littoral drift, but high enough to protect the dredging operations in the deposition basin and to control tidal currents in and out of the inlet. The midtide elevation of the weir crest appears to be suitable for this location where the mean tidal range is about 1.2 meters. The basin was dredged to a depth of 4.9 meters (16 feet) MLW, removing 280,600 cubic meters (367,000 cubic yards) of sand. A south jetty, intended to prevent material from entering the channel during periods of longshore transport reversal, was not initially constructed. Without the south jetty, sand that entered the inlet from the south caused a northward migration of the channel into the deposition basin and against the north jetty. Between 1967 and 1979 all dredging operations were involved in channel maintenance.

In 1980 the south jetty (see Fig. 6-50) was completed, and 957,000 cubic meters ($1,250,000$ cubic yards) of material was dredged from the navigation channel and from shoals within the inlet. This material was placed on the beach. It is expected that the south jetty will prevent the navigation channel from migrating into the deposition basin, and that the weir-jetty system will function as originally designed. It is projected that 230,000 cubic meters (300,000 cubic yards) of material will be impounded in the basin each year and hydraulic bypassing will alternate each year between Wrightsville Beach to the north and Masonboro Beach to the south.
h. Perdido Pass, Alabama. This weir-jetty project was completed in 1969 (see Fig. 6-51). Since the direction of the longshore transport is westward, the east jetty included a weir section 300 meters (984 feet) long at an elevation of 15 centimeters (6 inches) above MLW. The diurnal tidal range is about 0.4 meter (1.2 feet). A deposition basin was dredged adjacent to the weir and the 3.7 -meter-deep channel. The scour that occurred along the basin side of the concrete sheet-pile weir was corrected by placing a rock toe on the weir. Nearly all the littoral drift that crosses the weir fills the deposition basin so rapidly that it shoals on the channel. The first redredging of the basin occurred in 1971. During the period from 1972 to 1974, two dredging operations in the basin and the navigation channel produced a total of 596,000 cubic meters (780,000 cubic yards) of sand. Three dredging operations between 1975 and 1979 removed a total of 334,400 cubic meters (437,400 cubic yards) of sand from the channel. In $1980,175,400$ cubic meters (229,400 cubic yards) was dredged from the channel and deposition basin. These figures indicate that approximately 138,000 cubic meters (181,000 cubic yards) of sand is being bypassed each year.

In 1979 Hurricane Frederic dislodged three sections of the concrete sheet piling in the weir and cut a channel between the weir and the beach. The discharge from the dredging operations that year was used to close the breach and to fill the beach to the east of the weir.

3. Additional Bypassing Schemes.

Several other methods of bypassing sand at littoral barriers have been tested. Land-based vehicles were used in a sand-bypassing operation at Shark River Inlet, New Jersey (Angas, 1960). The project consisted of removing 190,000 cubic meters (250,000 cubic yards) of sand from an area 70 meters (225 feet) south of the south jetty and placing this material along 760 meters (2,500 feet) of the beach on the north side of the inlet. On the south side of the inlet a trestle was built in the borrow area to a point beyond the lowwater line allowing trucks access from the highway to a crane with a 2 -meter (2.5-yard) bucket. Three shorter trestles were built north of the inlet where the sand was dumped on the beach, allowing wave action to distribute it to the downdrift beaches. This method is limited by the fuel expense and by the requirement for an easy access across the inlet and to the loading and unloading areas.

Split-hull barges and hopper dredges can be used to bypass dredged material by placing the spoil just offshore of the downdrift beaches. A test of this method was conducted at New River Inlet, North Carolina, during the summer of 1976 (Schwartz and Musialowski, 1980). A split-hull barge placed 27,000 cubic meters (35,000 cubic yards) of relatively coarse sediment along a 215 -meter (705 -foot) reach of beach between the 2 - and 4 -meter-depth (7 - and 13- foot) contours. This material formed into bars that reduced in size as they moved shoreward. This final survey, 13 weeks later, indicated a slight accretion at the base of the foreshore and an increased width of the surf zone. The split-hull barge method was also used with commercially available equipment to place 230,000 cubic meters (300,000 cubic yards) at St. Augustine Beach, Florida, in 1979.

While this method provides some nourishment and protection to the beach, it is not known how it compares with conventional placement of sand on the
beach and foreshore. Drawbacks to the use of split-hull barges include the necessity for favorable wind and wave climate during operation and the possibility that storms may move the sediment offshore, where it can be lost to the littoral processes.

Side-cast dredging has been a successful means of maintaining and improving inlets where shallow depths and wave conditions make operation of a pipeline or hopper dredges hazardous (Long, 1967). However, the effectiveness of side-cast dredging as a bypassing method is limited by the length of the discharge pipe supporting boom. While it is possible to discharge in the downdrift direction, generally the dredged material is placed too close to the channel to be effectively bypassed. Reversals in the littoral current, and even changes in the tidal flow, can cause the dredged material to move back into the channel.

VI. GROINS

1. Types.

As described in Chapter 5, Section VI, groins are mainly classified as to permeability, height, and length. Groins built of common construction materials can be made permeable or impermeable and high or low in profile. The materials used are stone, concrete, timber, and steel. Asphalt and sandfilled nylon bags have also been used to a limited extent. Various structural types of groins built with different construction materials are illustrated in Figures 6-54 to 6-59.
a. Timber Groins. A common type of timber groin is an impermeable structure composed of sheet piles supported by wales and round piles. Some permeable timber groins have been built by leaving spaces between the sheeting. A typical timber groin is shown in Figure 6-54. The round timber piles forming the primary structural support should be at least 30 centimeters in diameter at the butt. Stringers or wales bolted to the round piles should be at least 20 by 25 centimeters, preferably cut and drilled before being pressure treated with creosote and coal-tar solution. The sheet piles are usually either of the Wakefield, tongue-and-groove, or shiplap type, supported in a vertical position between the wales and secured to the wales with nails. All timbers and piles used for marine construction should be given the maximum recommended pressure treatment of creosote and coal-tar solution. Ayers and Stokes (1976) provide timber structure design guidance.
b. Steel Groins. A typical design for a timber-steel sheet-pile groin is shown in Figure 6-55. Steel sheet-pile groins have been constructed with straight-web, arch-web, or Z piles. Some have been made permeable by cutting openings in the piles. The interlock type of joint of steel sheet piles provides a sandtight connection. The selection of the type of sheet piles depends on the earth forces to be resisted. Where the differential loads are small, straight web piles can be used. Where differential loads are great, deep-web Z piles should be used. The timber-steel sheet-pile groins are constructed with horizontal timber or steel wales along the top of the steel sheet piles, and vertical round timber piles or brace piles are bolted to the outside of the wales for added structural support. The round piles may not always be required with the Z pile, but ordinarily are used with the flat or

Wallops Island, Virginia (1964)

Figure 6-54. Timber-sheet pile groin.

New Jersey (Sept. 1962)

Figure 6-55. Timber-steel sheet-pile groin.

Newport Beach, California (Mar. 1969)

Figure 6-56. Cantilever-steel sheet-pile groin.

Presque Isle, Pennsylvania (Oct. 1965)

Figure 6-57. Cellular-steel sheet-pile groin.

Doheny Beach State Park., California (Oct. 1965)

TIMBER WALE

Dimensions Vory According to Differentiol Looding
CONCRETE PILE SECTION
Figure 6-58. Prestressed-concrete sheet-pile groin.

Westhampton Beach, New York (1972)

Figure 6-59. Rubble-mound groin.
arch-web sections. The round pile and timbers should be creosoted to the maximum pressure treatment for use in waters with marine borers.

Figure 6-56 illustrates the use of a cantilever-steel sheet-pile groin. A groin of this type may be used where the wave attack and earth loads are moderate. In this structure, the sheet piles are the basic structural members; they are restrained at the top by a structural-steel channel welded to the piles. Differential loading after sediments have accumulated on one side is an important consideration for structures of this type.

The cellular-steel sheet-pile groin has been used on the Great Lakes where adequate pile penetration cannot be obtained for stability. A cellulartype groin is shown in Figure 6-57. This groin is comprised of cells of varying sizes, each consisting of semicircular walls connected by cross diaphragms. Each cell is filled with sand or aggregate to provide structural stability. Concrete, asphalt, or stone caps are used to retain the fill material.
c. Concrete Groins. Previously, the use of concrete in groins was generally limited to permeable-type structures that permitted passage of sand through the structure. Many of these groin designs are discussed by Portland Cement Association (1955) and Berg and Watts (1967). A more recent development in the use of concrete for groin construction is illustrated in Figure 6-58. This groin is an impermeable, prestressed concrete-pile structure with a cast-in-place concrete cap. At an installation at Masonboro Inlet, North Carolina, a double-timber wale was used as a cap to provide greater flexibility. Portland Cement Association (1969) and U.S. Army, Corps of Engineers (1971b) provide guidance on concrete hydraulic structure design.
d. Rubble-Mound Groins. Rubble-mound groins are constructed with a core of quarry-run material, including fine material to make them sandtight, and covered with a layer of armor stone. The armor stone should weigh enough to be stable against the design wave. Typical rubble-mound groins are illustrated in Figure 6-59.

If permeability of a rubble-mound groin is a problem, the voids between stones in the crest above the core can be filled with concrete or asphalt grout. This seal also increases the stability of the entire structure against wave action. In January 1963 asphalt grout was used to seal a rubble-mound groin at Asbury Park, New Jersey, with apparent success (Asphalt Institute, 1964, 1965, and 1969).
e. Asphalt Groins. Experimentation in the United States with asphalt groins began in 1948 at Wrightsville Beach, North Carolina. During the next decade, sand-asphalt groins were built at the following sites: Fernandina Beach, Florida; Ocean City, Maryland (Jachowski, 1959); Nags Head, North Carolina; and Harvey Cedars, Long Beach Island, New Jersey.

The behavior of the type of sand-asphalt groin used to date demonstrates definite limitations of their effectiveness. An example of such a structure is a groin extension placed beyond the low-water line which is composed of a
hot asphalt mixture and tends toward early structural failure of the section seaward of the beach berm crest. Failure results from lack of resistance to normal seasonal variability of the shoreface and consequent undermining of the structure foundation. Modification of the design as to mix, dimensions, and sequence of construction may reveal a different behavior. See Asphalt Institute (1964, 1965, 1969, and 1976) for discussions of the uses of asphalt in hydraulic structures.

2. Selection of Type.

After research on a problem area has indicated the use of groins as practicable, the selection of groin type is based on varying factors related to conditions at each location. A thorough investigation of existing foundation materials is essential. Borings or probings should be taken to determine the subsurface conditions for penetration of piles. Where foundations are poor or where little penetration is possible, a gravity-type structure such as a rubble or a cellular-steel sheet-pile groin should be considered. Where penetration is good, a cantilever-type structure made of concrete, timber, or steel-sheet piles should be considered.

Availability of materials affects the selection of the most suitable groin type because of costs. Annual maintenance, the period during which protection will be required, and the available funds for initial construction must also be considered. The initial costs of timber and steel sheet-pile groins, in that order, are often less than for other types of construction. Concrete sheet-pile groins are generally more expensive than either timber or steel, but may cost less than a rubble-mound groin. However, concrete and rubble-mound groins require less maintenance and have a longer life than timber or steel sheet-pile groins.

3. Design.

The structural design of a groin is explained in a number of Engineer Manuals (EM's). EM 1110-2-3300 (U.S. Army Corps of Engineers 1966) is a general discussion of the components of a coastal project. A forthcoming EM (U.S. Army Corps of Engineers (in preparation, 1984)) is a comprehensive presentation of the design of coastal groins. The basic soil mechanics involved in calculating the soil forces on retaining walls (and, therefore, sheet-pile groins) are presented in EM 1110-2-2502 (U.S. Army Corps of Engineers 1961). EM 1110-2-2906 (U.S. Army Corps of Engineers 1958) discusses the design of pile structures and foundations that can be used in the design of sheet-pile groins. Wave loading on vertical sheet-pile groins is discussed by Weggel (1981a).
VII. JETTIES

1. Types.

The principal materials for jetty construction are stone, concrete, steel, and timber. Asphalt has occasionally been used as a binder. Some structural types of jetties are illustrated in Figures 6-60, 6-61, and 6-62.
a. Rubble-Mound Jetties. The rubble-mound structure is a mound of stones of different sizes and shapes, either dumped at random or placed in

Santa Cruz, California (Mar. 1967)

Figure 6-60. Quadripod and rubble-mound jetty.

Humboldt Bay, California (1972)

(after Magoon and Shimizu, 1971)

Figure 6-61. Dolos and rubble-mound jetty.

Figure 6-62. Ce1lular-steel sheet-pile jetty.
courses. Side slopes and armor unit sizes are designed so that the structure will resist the expected wave action. Rubble-mound jetties (see Figs. 6-60 and 6-61), which are used extensively, are adaptable to any water depth and to most foundation conditions. The chief advantages are as follows: structure settling readjusts component stones which increases stability, damage is repairable, and the rubble absorbs rather than reflects wave action. The chief disadvantages are the large quantity of material required, the high initial cost of satisfactory material if not locally available, and the wave energy propagated through the structure if the core is not high and impermeable.

Where quarrystone armor units in adequate quantities or size are not economical, concrete armor units are used. Chapter 7, Section III, 7,f discusses the shapes that have been tested and are recommended for consideration. Figure 6-60 illustrates the use of quadripod armor units on the rubblemound jetty at Santa Cruz, California. Figure 6-61 illustrates the use of the more recently developed dolos armor unit where 38 - and 39 - metric ton (42- and 43- short ton) dolos were used to strengthen the seaward end of the Humboldt Bay, California, jetties against 12 -meter breaking waves (Magoon and Shimizu, 1971).
b. Sheet-Pile Jetties. Timber, steel, and concrete sheet piles are used for jetty construction where waves are not severe. Steel sheet piles are used for various jetty formations which include the following: a single row of piling with or without pile buttresses; a single row of sheet piles arranged to function as a buttressed wall; double walls of sheet piles, held together with tie rods, with the space between the walls filled with stone or sand (usually separated into compartments by cross walls if sand is used); and cellular-steel sheet-pile structures (see Fig. 6-62), which are modifications of the double-wall type.

Cellular-steel sheet-pile structures require little maintenance and are suitable for construction in depths to 12 meters on all types of foundations. Steel sheet-pile structures are economical and may be constructed quickly, but are vulnerable to storm damage during construction. If coarse aggregate is used to fill the structure, the life will be longer than with sandfill because holes that corrode through the web have to become large before the coarse aggregate will leach out. Corrosion is the principal disadvantage of steel in seawater. Sand and water action abrade corroded metal near the mudline and leave fresh steel exposed. The life of the piles in this environment may not exceed 10 years. However, if corrosion is not abraded, piles may last more than 35 years. Plastic protective coatings and electrical cathodic protection have effectively extended the life of steel sheet piles. However, new alloy steels are most effective if abrasion does not deteriorate their protective layer.
VIII. BREAKWATERS, SHORE-CONNECTED

1. Types.

Variations of rubble-mound designs are generally used as breakwaters in exposed locations. In less exposed areas, both cellular-steel and concrete caissons are used. Figures 6-63, 6-64, and 6-65 illustrate structural types of shore-connected breakwaters used for harbor protection.

Cresent City, California (Apr. 1964)

$* " \mathrm{~B}_{2}$ " $-0.9-\mathrm{mt}$ Variation to $6.3-\mathrm{mt}$ Max.
$* * " \mathrm{~B}_{3}$ " -0.5 -to 0.9-mt Min.; $6.3-\mathrm{mt}$ Max. as Available
$* * * \mathrm{~B}^{\prime \prime}$ - 0.9 -to $6.3-\mathrm{mt}$ or to Suit Depth Conditions at Seaward Toe

Figure 6-63. Tetrapod and rubble-mound breakwater.

Kahului, Maui, Hawaii (1970)

Harborside
Seaside

Figure 6-64. Tribar and rubble-mound breakwater.

Port Sanilac, Michigan (July 1963)

Figure 6-65. Cellular-steel sheet-pile and sheet-pile breakwater.
a. Rubble-Mound Breakwaters. The rubble-mound breakwaters in Figures 6-63 and 6-64 are adaptable to almost any depth and can be designed to withstand severe waves.

Figure 6-63 illustrates the first use in the United States of tetrapod armor units. The Crescent City, California, breakwater was extended in 1957 using two layers of 22.6 -metric ton (25-short ton) tetrapods (Deignan, 1959). In 1965, 31.7- and 45.4-metric ton (35- and 50-short ton) tribars were used to repair the east breakwater at Kahului, Hawaii (Fig. 6-64).
b. Stone-Asphalt Breakwaters. In 1964 at Ijmuiden, the entrance to the Port of Amsterdam, The Netherlands, the existing breakwaters were extended to provide better protection and enable passage for larger ships. The southern breakwater was extended 2100 meters (6,890 feet) to project 2540 meters (8,340 feet) into the sea at a depth of about 18 meters. Then rubble breakwaters were constructed in the sea with a core of heavy stone blocks, weighing 300 to 900 kilograms (660 to 2,000 pounds), using the newly developed material at that time, stone asphalt, to protect against wave attack.

The stone asphalt contained 60 to 80 percent by weight stones 5 to 50 centimeters in size, and 20 to 40 percent by weight asphaltic-concrete mix with a maximum stone size of 5 centimeters. The stone-asphalt mix was pourable and required no compaction.

During construction the stone core was protected with about 1.1 metric tons of stone-asphalt grout per square meter (1 short ton per square yard) of surface area. To accomplish this, the composition was modified to allow some penetration into the surface layer of the stone core. The final protective application was a layer or revetment of stone asphalt about 2 meters thick. The structure side slopes are 1 on 2 above the water and 1 on 1.75 under the water. Because large amounts were dumped at one time, cooling was slow, and successive batches flowed together to form one monolithic armor layer. By the completion of the project in 1967 , about 0.9 million metric tons (1 million short tons) of stone asphalt had been used.

The requirements for a special mixing plant and special equipment will limit the use of this material to large projects. In addition, this particular project has required regular maintenance to deal with the plastic-flow problems of the stone asphalt caused by solar heating.
c. Cellular-Steel Sheet-Pile Breakwaters. These breakwaters are used where storm waves are not too severe. A cellular-steel sheet-pile and steel sheet-pile breakwater installation at Port Sanilac, Michigan, is illustrated in Figure 6-65. Cellular structures provide a vertical wall and adjacent deep water, which is usable for port activities if fendered.

Cellular-steel sheet-pile structures require little maintenance and are suitable for construction on various types of sedimentary foundations in depths to 12 meters. Steel sheet-pile structures have advantages of economy and speed of construction, but are vulnerable to storm damage during construction. Retention of cellular fill is absolutely critical to their stability. Corrosion is the principal disadvantage of steel in seawater; however, new corrosion-resistant steel sheet piles have overcome much of this problem. Corrosion in the Great Lakes (freshwater) is not as severe a problem as in the ocean coastal areas.
d. Concrete-Caisson Breakwaters. Breakwaters of this type are built of reinforced concrete shells that are floated into position, settled on a prepared foundation, filled with stone or sand for stability, and then capped with concrete or stones. These structures may be constructed with or without parapet walls for protection against wave overtopping. In general, concrete caissons have a reinforced concrete bottom, although open-bottom concrete caissons have been used. The open-bottom type is closed with a temporary wooden bottom that is removed after the caisson is placed on the foundation. The stone used to fill the compartments combines with the foundation material to provide additional resistance against horizontal movement.

Caissons are generally suitable for depths from about 3 to 10 meters (10 to 35 feet). The foundation, which usually consists of a mat or mound of rubble stone, must support the structure and withstand scour (see Ch. 7, Sec. III, 8). Where foundation conditions dictate, piles may be used to support the structure. Heavy riprap is usually placed along the base of the caissons to protect against scour, horizontal displacement, or weaving when the caisson is supported on piles.
IX. BREAKWATERS, OFFSHORE

Offshore breakwaters are usually shore-parallel structures located in water depths between 1.5 and 8 meters (5 and 25 feet). The main functions of breakwaters are to provide harbor protection, act as a littoral barrier, provide shore protection, or provide a combination of the above features. Design considerations and the effects that offshore breakwaters have on the shoreline and on littoral processes are discussed in Chapter 5, Section IX.

1. Types.

Offshore breakwaters can usually be classified into one of two types: the rubble-mound breakwater and the cellular-steel sheet-pile breakwater. The most widely used type of offshore breakwater is of rubble-mound construction; however, in some parts of the world breakwaters have been constructed with timber, concrete caissons, and even sunken ships.

A variation of offshore breakwater is the floating breakwater. These structures are designed mainly to protect small-craft harbors in relatively sheltered waters; they are not recommended for application on the open coast because they have little energy-dissipating effect on the longer period ocean waves. The most recent summary of the literature dealing with floating breakwaters is given by Hales (1981). Some aspects of floating breakwater design are given by Western Canada Hydraulics Laboratories Ltd. (1981).

Selection of the type of offshore breakwater for a given location first depends on functional needs and then on the material and construction costs. Determining factors are the depth of water, the wave action, and the availability of material. For open ocean exposure, rubble-mound structures are usually required; for less severe exposure, as in the Great Lakes, the cellular-steel sheet-pile structure may be a more economical choice. Figure 6-66 illustrates the use of a rubble-mound offshore breakwater to trap littoral material, to protect a floating dredge, and to protect the harbor entrance.

Probably the most notable offshore breakwater complex in the United

Lakeview Park, Lorain, Ohio (Apr. 1981)

LAKESIDE

Figure 6-66. Segmented rubble-mound offshore breakwaters.

States is the 13.7-kilometer-long (8.5-mile) Los Angeles-Long Beach breakwater complex built between 1899 and 1949. Other U.S. offshore breakwaters are listed in Table 5-3 of Chapter 5.

2. Segmented Offshore Breakwaters.

Depending on the desired function of an offshore breakwater, it is often advantageous to design the structure as a series of short, segmented breakwaters rather than as a singular, continuous breakwater. Segmented offshore breakwaters can be used to protect a longer section of shoreline, while allowing wave energy to be transmitted through the breakwater gaps. This permits a constant proportion of wave energy to enter the protected region to retard tombolo formation, to aid in continued longshore sediment transport at a desired rate, and to assist in maintaining the environmental quality of the sheltered water. Additionally, the segmented breakwaters can be built at a reasonable and economical water depth while providing storm protection for the shoreline.

Figure 6-66 illustrates the structural details of the segmented rubblemound breakwater at Lakeview Park, Lorain, Ohio, which is on Lake Erie. This project, which was completed in October 1977, consists of three detached rubble-mound breakwaters, each 76 meters long and located in a water depth of -2.5 meters (-8 feet) low water datum (LWD). The breakwaters are spaced 50 meters (160 feet) apart and are placed about 145 meters (475 feet) offshore. They protect 460 meters of shoreline. The longer groin located there was extended to 106 meters (350 feet), and an initial beach fill of 84,100 cubic meters (110,000 cubic yards) was placed. A primary consideration in the design was to avoid the formation of tombolos that would interrupt the longshore sediment transport and ultimately starve the adjacent beaches.

Immediately after construction, the project was monitored for 2 years. Findings indicated that the eastern and central breakwaters had trapped littoral material, while the western breakwater had lost material (Walker, Clark, and Pope, 1980). The net project gain was 3800 cubic meters (5,000 cubic yards) of material. Despite exposure to several severe storms from the west during periods of high lake levels, there had been no damage to the breakwaters or groins and no significant erosion had occurred on the lake bottom between the breakwaters.

X. CONSTRUCTION MATERIALS AND DESIGN PRACTICES

The selection of materials in the structural design of shore protective works depends on the economics and the environmental conditions of the shore area. The criteria that should be applied to commonly used materials are discussed below.

1. Concrete.

The proper quality concrete is required for satisfactory performance and durability in a marine environment (see Mather, 1957) and is obtainable with good concrete design and construction practices. The concrete should have low permeability, provided by the water-cement ratio recommended for the exposure conditions; adequate strength; air entrainment, which is a necessity in a
freezing climate; adequate coverage over reinforcing steel; durable aggregates; and the proper type of portland cement for the exposure conditions (U.S. Army, Corps of Engineers, 197la, 1971b).

Experience with the deterioration of concrete in shore structures has provided the following guidelines:
(a) Additives used to lower the water-cement ratio and reduce the size of air voids cause concrete to be more durable in saltwater.
(b) Coarse and fine aggregates must be selected carefully to ensure that they achieve the desired even gradation when mixed together.
(c) Mineral composition of aggregates should be analyzed for possible chemical reaction with the cement and seawater.
(d) Maintenance of adequate concrete cover over all reinforcing steel during casting is very important.
(e) Smooth form work with rounded corners improves the durability of concrete structures.

2. Steel.

Where steel is exposed to weathering and seawater, allowable working stresses must be reduced to account for corrosion and abrasion. Certain steel chemical formulations are available that offer greater corrosion resistance in the splash zone. Additional protection in and above the tidal range is provided by coatings of concrete, corrosion-resistant metals, or organic and inorganic paints (epoxies, vinyls, phenotics, etc.).

3. Timber.

Allowable stresses for timber should be those for timbers that are continuously damp or wet. These working stresses are discussed in U.S. Department of Commerce publications dealing with American lumber standards.

Experience with the deterioration of timber shore structures (marine use) may be summarized in the following guidelines:
(a) Untreated timber piles should not be used unless the piles are protected from exposure to marine-borer attack.
(b) The most effective injected preservative for timber exposed in seawater appears to be creosote oil with a high phenolic content. For piles subject to marine-borer attack, a maximum penetration and retention of creosote and coal-tar solutions is recommended. Where borer infestation is severe, dual treatment with creosote and waterborne salt (another type of preservative) is necessary. The American Wood-Preservers Association recommends the use of standard sizes: $\mathrm{C}-2$ (lumber less than 13 centimeters (5 inches) thick); C-3 (piles); and $\mathrm{C}-18$ (timber and lumber, marine use).
(c) Boring and cutting of piles after treatment should be avoided. Where unavoidable, cut surfaces should receive a field treatment of preservative.
(d) Untreated timber piles encased in a Gunite armor and properly sealed at the top will give economical service.

4. Stone.

Stone used for protective structures should be sound, durable, and hard. It should be free from laminations, weak cleavages, and undesirable weathering. It should be sound enough not to fracture or disintegrate from air action, seawater, or handling and placing. All stone should be angular quarrystone. For quarrystone armor units, the greatest dimension should be no greater than three times the least dimension to avoid placing slab-shaped stones on the surface of a structure where they would be unstable. All stone should conform to the following test designations: apparent specific gravity, American Society of Testing and Materials (ASTM) C 127, and abrasion, ASTM C 131. In general, it is desirable to use stone with high specific gravity to decrease the volume of material required in the structure.

5. Geotextiles.

The proliferation of brands of geotextiles, widely differing in composition, and the expansion of their use into new coastal construction presents selection and specification problems. Geotextiles are used most often as a replacement for all or part of the mineral filter that retains soil behind a revetted surface. However, they also serve as transitions between in situ bottom soil and an overlying structural material where they may provide dual value as reinforcement. The geotextiles for such coastal uses should be evaluated on the basis of their filter performance in conjunction with the retained soil and their physical durability in the expected environment.

Two criteria must be met for filter performance. First, the filter must be sized by its equivalent opening of sieve to retain the soil gradation behind it while passing the pore water without a significant rise in head (uplift pressure); it must be selected to ensure this performance, even when subjected to expected tensile stress in fabric. Second, the geotextile and retained soil must be evaluated to assess the danger of fine-sized particles migrating into the fabric, clogging the openings, and reducing permeability.

The physical durability of a geotextile is evaluated by its wear resistance, puncture and impact resistance, resistance to ultraviolet damage, flexibility, and tensile strength. The specific durability needs of various coastal applications must be the basis for geotextile selection.

6. Miscellaneous Design Practices.

Experience has provided the following general guidelines for construction in the highly corrosive coastal environment:
(a) It is desirable to eliminate as much structural bracing as possible within the tidal zone where maximum deterioration occurs.
(b) Round members generally last longer than other shapes because of the smaller surface areas and better flow characteristics.
(c) All steel or concrete deck framing should be located above the normal spray level.

LITERATURE CITED

ANGAS, W.M., "Sand By-Passing Project for Shark River In1et," Journal of the Waterways and Harbors Division, Vol. 86, WW3, No. 2599, Sept. 1960.

ASPHALT INSTITUTE, "Sentinel Against the Sea," AsphaZt, Jan. 1964.
ASPHALT INSTITUTE, "Battering Storms Leave Asphalt Jetty Unharmed," AsphaZt, Oct. 1965.

ASPHALT INSTITUTE, "Asbury Park's Successful Asphalt Jetties," AsphaZt Jetties, Information Series No. 149, Jan. 1969.

ASPHALT INSTITUTE, "Asphalt in Hydraulics," Manual Series No. 12, Nov. 1976.
AUGUSTINE, M.T., et al., "Response of American Beachgrass to Fertilizer," Journal of Soil and Water Conservation, Vo1. 19, No. 3, 1964, pp. 112-115.

AYERS, J., and STOKES, R., "Simplified Design Methods of Treated Timber Structures for Shore, Beach, and Marina Construction," MR 76-4, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Mar. 1976.

BAGNOLD, R.A., The Physics of Blown Sand and Desert Dunes, William, Morrow, and Company, Inc., New York, 1942.

BARR, D.A., "Jute-Mesh Dune Forming Fences," Journal of the Soil Conservation Service of New South Wales, Vol. 22, No. 3, 1966, pp. 123-129.

BERG, D.W., and WATTS, G.M., "Variations in Groin Design," Journal of the Waterways and Harbors Division, Vo1. 93, WW2, No. 5241, 1967, pp. 79-100.

BLUMENTHAL, K.P., "The Construction of a Drift Sand Dyke on the Island Rottumerplatt," Proceedings of the Ninth Conference on Coastal Engineering, American Society of Civil Engineers, Ch. 23, 1965, pp. 346-367.

BROWN, R.L., and HAFENRICHTER, A.L., "Factors Influencing the Production and Use of Beachgrass and Dunegrass Clones for Erosion Control: I. Effect of Date of Planting," Journal of Agronomy, Vol. 40, No. 6, 1948, pp. 512-521.

CAMPBELL, W.V., and FUZY, E.A., "Survey of the Scale Insect Effect on American Beachgrass," Shore and Beach, Vo1. 40, No. 1, 1972, pp. 18-19.

DEIGNAN, J.E., "Breakwater at Crescent City, California," Journal of the Waterways and Harbors Division, Vol. 85, WW3, No. 2174, 1959.

DUANE, D.B., and MEISBURGER, E.P., "Geomorphology and Sediments of the Nearshore Continental Shelf, Miami to Palm Beach, Florida," TM 29, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Nov. 1969.

FIELD, M.E., "Sediments, Shallow Subbottom Structure, and Sand Resources of the Inner Continental Shelf, Central Delmarva Peninsula," TP 79-2, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Va., June 1979.

FIELD, M.E., and DUANE, D.B., "Geomorphology and Sediments of the Inner Continental Shelf, Cape Canaveral, Florida," TM 42, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Mar. 1974.

FISHER, C.H., "Mining the Ocean for Beach Sand," Proceedings of the Conference on Civil Engineering in the Oceans, II, American Society of Civil Engineers, 1969, pp. 717-723.

GAGE, B.O., "Experimental Dunes of the Texas Coast," MP 1-70, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Jan. 1970.

HALES, L.Z., "Floating Breakwaters: State-of-the-Art Literature Review," TR 81-1, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Oct. 1981.

HALL, J.V., Jr., "Wave Tests of Revetment Using Machine-Produced Interlocking Blocks," Proceedings of the 10th Conference on Coastal Engineering, American Society of Civil Engineers, Ch. 60, 1967, pp. 1025-1035 (also Reprint 2-67, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., NTIS 659 170).

HANDS, E.B., "Performance of Restored Beach and Evaluation of Offshore Dredging Site at Redondo Beach, California," Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., (in preparation, 1985).

HAWK, V.B., and SHARP, W.C., "Sand Dune Stabilization Along the North Atlantic Coast," Journal of Soil and Water Conservation, Vol. 22, No. 4, 1967, pp. 143-146.

HERRON, W.J., Jr., "Beach Erosion Control and Small Craft Harbor Development at Point Hueneme," Shore and Beach, Vo1. 28, No. 2, Oct. 1960, pp. 11-15.

HERRON, W.J., Jr., and HARRIS, R.L., "Littoral Bypassing and Beach Restoration in the Vicinity of Point Hueneme, California," Proceedings of the 10th Conference on Coastal Engineering, American Society of Civil Engineers, Vol. I, 1967, pp. 651-675.

HOBSON, R.D., "Beach Nourishment Techniques - Typical U.S. Beach Nourishment Projects Using Offshore Sand Deposits," TR H-76-13, Report 3, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., May 1981.

HODGES, T.K., "Sand By-Passing at Hillsboro Inlet, Florida," Bulletin of the Beach Erosion Board, Vo1. 9, No. 2, Apr. 1955.

JACHOWSKI, R.A., "Behavior of Sand-Asphalt Groins at Ocean City, Maryland," MP 2-59, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., May 1959.

JAGSCHITZ, J.A., and BELL, R.S., "Restoration and Retention of Coastal Dunes with Fences and Vegetation," Bulletin No. 382, Agricultural Experiment Station, University of Rhode Island, Kingston, R.I., 1966a.

JAGSCHITZ, J.A., and BELL, R.S., "American Beachgrass (Establishment--Fertilization--Seeding)," Bulletin No. 383, Agricultural Experiment Station, University of Rhode Island, Kingston, R.I., 1966b.

JONES, C.P. and MEHTA, A.J., "A Comparative Review of Sand Transfer Systems at Florida's Tidal Entrances," Proceedings of the Fifth Symposium of the Waterway, Port, Coastal and Ocean Division, American Society of Civil Engineers, Nov. 1977, pp. 48-66.

KIDBY, H.A., and OLIVER J.R., "Erosion and Accretion Along Clatsop Spit," Proceedings of the Coastal Engineering Santa Barbara Specialty Conference, American Society of Civil Engineers, 1965, pp. 647-672.

KNUTSON, P.L., "Planting Guidelines for Dune Creation and Stabilization," CETA 77-4, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., 1977.

KNUTSON, P.L., "Experimental Dune Restoration and Stabilization, Nauset Beach, Cape Cod, Massachusetts," TP 80-5, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Aug. 1980.

KRUMBEIN, W.C., and JAMES, W.R., "A Lognormal Size Distribution Model for Estimating Stability of Beach Fill Material," TM 16, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Nov. 1965.

LONG, E.G., Jr., "Improvement of Coastal Inlets by Sidecast Dredging," Journal of the Waterways and Harbor Division, Vol. 93, WW4, Nov. 1967, pp. 185-199.

LUCAS, L.T., et al., "Marasmius Blight, A New Disease of American Beachgrass," Plant Disease Reporter, Vol. 55, No. 7, 1971, pp. 582-585.

MAGNUSON, N.C., "Planning and Design of a Low-Weir Section Jetty at Masonboro Inlet, North Carolina," Proceedings of the Coastal Engineering Santa Barbara Specialty Conference, American Society of Civil Engineers, Ch. 36, 1966, pp. 807-820.

MAGOON, O.T., and SHIMIZU, N., "Use of Dolos Armor Units in Rubble-Mound Structures, e.g., for Conditions in the Arctic," Proceedings of the First International Conference on Port and Ocean Engineering Under Arctic Conditions, Vol. II, 1971, pp. 1089-1108 (also Reprint 1-73, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., NTIS 757 973).

MATHER, B., "Factors Affecting the Durability of Concrete in Coastal Structures," TM 96, U.S. Army Corps of Engineers, Beach Erosion Board, Washington, D.C., June 1957.

MAURIELLO, L.J., "Experimental Use of Self-Unloading Hopper Dredge for Rehabilitation of an Ocean Beach," Proceedings of the Conference on World Dredging, 1967, pp. 367-396.

McLAUGHLIN, W.T., and BROWN, R.L., "Controlling Coastal Sand Dunes in the Pacific Northwest," No. 660, U.S. Department of Agriculture, Washington, D.C., Sept. 1942, pp. 1-46.

MEISBURGER, E.P., "Geomorphology and Sediments of the Chesapeake Bay Entrance," TM 38, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., June 1972.

MEISBURGER, E.P., "Geomorphology and Sediments of Western Massachusetts Bay," TP 76-3, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Apr. 1976.

MEISBURGER, E.P., "Sand Resources on the Inner Continental Shelf of the Cape Fear Region, North Carolina," MR 77-11, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Nov. 1977.

MEISBURGER, E.P., "Reconnaissance Geology of the Inner Continental Shelf, Cape Fear Region, North Carolina," TP 79-3, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Sept. 1979.

MEISBURGER, E.P., and DUANE, D.B., "Geomorphology and Sediments of the Inner Continental Shelf, Palm Beach to Cape Kennedy, Florida," TM 34, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Feb. 1971.

MEISBURGER, E.P., and FIELD, M.E., "Geomorphology, Shallow Structure, and Sediments of the Florida Inner Continental Shelf, Cape Canaveral to Georgia," TM 54, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., July 1975.

MEISBURGER, E.P., and WILLIAMS, S.J., "Sand Resources on the Inner Continental Shelf of the Cape May Region, New Jersey," MR 80-4, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., July 1980.

MEISBURGER, E.P., and WILLIAMS, S.J., "Sand Resources on the Inner Continental Shelf off the Central New Jersey Coast," MR 82-10, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., 1982.

MEISBURGER, E.P., WILLIAMS, S.J., and PRINS, D.A., "Sand Resources of Southeastern Lake Michigan," MR 79-3, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., July 1979.

MIDDLETON, S.R., "Installation and Operation of Fixed Sand Bypassing Plant at Lake Worth Inlet, Florida," Shore and Beach, Vol. 27, No. 9, June 1959.

NERSESIAN, G.K., "Beach Fill Design and Placement at Rockaway Beach, New York, Using Offshore Ocean Borrow Sources," Proceedings of the Fifth Symposium of the Waterway, Port, Coastal and Ocean Division, American Society of Civil Engineers, Nov. 1977, pp. 228-247.

PORTLAND CEMENT ASSOCIATION, Conerete Shore Protection, 2d ed., 1955.

PORTLAND CEMENT ASSOCIATION, "Concrete for Hydraulic Structures," I5012.03W, 1969.

RAYNER A.C., and MAGNUSON, N.C., "Stabilization of Masonboro Inlet," Shore and Beach, Vol. 34, No. 2, 1966, pp. 36-41.

RICHARDSON, T.W., "Beach Nourishment Techniques - Dredging Systems for Beach Nourishment from Offshore Sources," TR H-76-13, Report 1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Sept. 1976.

RICHARDSON, T.W., "Systems for Bypassing Sand at Coastal Inlets," Proceedings of the Fifth Symposium of the Waterway, Port, Coastal and Ocean Division, American Society of Civil Engineers, Nov. 1977, pp. 67-84.

SAVAGE, R.P., "Sand Bypassing at Port Hueneme California," TM 92, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., Mar. 1957.

SAVAGE, R.P., "Experimental Study of Dune Building with Sand Fences," Proceedings of the Eighth Conference on Coastal Engineering, American Society of Civil Engineers, 1962, pp. 380-396.

SAVAGE, R.P., and WOODHOUSE, W.W., Jr., "Creation and Stabilization of Coastal Barrier Dunes," Proceedings of the 11th Conference on Coastal Engineering, American Society of Civil Engineers, 1969, pp. 671-700.

SCHWARTZ, R.K., and MUSIALOWSKI, F.R., "Transport of Dredged Sediment Placed in the Nearshore Zone--Currituck Sand-Bypass Study (Phase I)," TP 80-1, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Feb. 1980.

SENECA, E.D., and COOPER, A.W., "Germination and Seedling Response to Temperature, Daylength, and Salinity by Ammophila breviligulata from Michigan and North Carolina," Botanical Gazette, Vol. 132, No. 3, 1971, pp. 203-215.
U.S. ARMY CORPS OF ENGINEERS, "Bypassing Littoral Drift at a Harbour Entrance," The Bulletin of the Beach Erosion Board, Vol. 5, No. 3, July 1951.
U.S. ARMY CORPS OF ENGINEERS, "Sand Bypassing Plant at Salina Cruz, Mexico," The Bulletin of the Beach Erosion Board, Vol. 6, No. 2, Apr. 1952.
U.S. ARMY CORPS OF ENGINEERS, "Status of Sand Bypassing Plant at Salina Cruz Harbor, Isthmus of Tehantepec, Mexico," The Bulletin of the Beach Erosion Board, Vol. 9, No. 1, Jan. 1955.
U.S. ARMY CORPS OF ENGINEERS, "Beach Erosion at Durban, South Africa," The Bulletin of the Beach Erosion Board, Vol. 10, No. 2, July 1956.
U.S. ARMY CORPS OF ENGINEERS, "Design of Pile Structures and Foundations," EM 1110-2-2906, Office, Chief of Engineers, Washington, D.C., July 1958.
U.S. ARMY CORPS OF ENGINEERS, "Retaining Walls," EM 1110-2-2502, Office, Chief of Engineers, Washington, D.C., May 1961.
U.S. ARMY CORPS OF ENGINEERS, "Beach Erosion Control and Shore Protection Studies," EM 1110-2-3300, Office, Chief of Engineers, Washington, D.C., Mar. 1966.
U.S. ARMY CORPS OF ENGINEERS, "Details of Reinforcement--Hydraulic Structures," EM 1110-2-2103, Office, Chief of Engineers, May 1971a.
U.S. ARMY CORPS OF ENGINEERS, "Standard Practice for Concrete," EM 1110-22000, Office, Chief of Engineers, Nov. 1971b.
U.S. ARMY CORPS OF ENGINEERS, "Low-Cost Shore Protection," Final Report on the Shoreline Erosion Control Demonstration Program (Section 54), Office, Chief of Engineers, Washington, D.C., Aug. 1981.
U.S. ARMY CORPS OF ENGINEERS, "Dredging and Dredged Material Disposal," EM 1110-2-5025, Office, Chief of Engineers, Washington, D.C. (March, 1983).
U.S. ARMY CORPS OF ENGINEERS, "Hydraulic Design of Coastal Groins," Office, Chief of Engineers, Washington, D.C. (in preparation, 1984).
U.S. ARMY ENGINEER DISTRICT, GALVESTON, "Survey Report on Corpus Christi Beach, Texas (Restoration Project)," Galveston, Tex., May 1969.
U.S. ARMY ENGINEER DISTRICT, JACKSONVILLE, "Beach Erosion Control and Hurricane Surge Protection Project, Dade County, Florida," General Design Memorandum, Jacksonville, Fla., Sept. 1975.
U.S. ARMY ENGINEER DISTRICT, LOS ANGELES, "General Design for Harbor and Shore Protection Works Near Port Hueneme, California," Los Angeles, Calif., 1957.
U.S. ARMY ENGINEER DISTRICT, LOS ANGELES, "Cooperative Research and Data Collection Program of Coast of Southern California, Cape San Martin to Mexican Boundary, Three-Year Report, 1967-69," Los Angeles, Calif., 1970.
U.S. ARMY ENGINEER DISTRICT, PHILADELPHIA, "Study on Use of Hopper Dredges for Beach Nourishment," Philade1phia, Pa., 1967.
U.S. ARMY ENGINEER DISTRICT, WILMINGTON, "Carolina Beach and Vicinity, North Carolina; Combined Report on an Interim Hurricane Survey and Cooperative Beach Erosion Control Study," Wilmington, N.C., 1961.
U.S. ARMY ENGINEER DISTRICT, WILMINGTON, "Atlantic Intracoastal Waterway Between Norfolk, Virginia and the St. Johns River, Florida, Wilmington District," Wilmington, N.C., 1970.
U.S. DEPARTMENT OF AGRICULTURE, "Sand Dune Control Benefits Everbody: The Bodega Bay Story," Soils Conservation Service Pamphlet, Portland, Oreg., 1967.

VALLIANOS L., "Recent History of Erosion at Carolina Beach, North Carolina," Proceedings of the 12th Conference on Coastal Engineering, American Society of Civil Engineers, Vol. 2, Ch. 77, 1970, pp. 1223-1242.

WALKER, J.R., CLARK, D., and POPE, J., "A Detached Breakwater System for Beach Protection," Proceedings of the 17th Conference on Coastal Engineering, American Society of Civil Engineers, 1980.

WATTS, G.M., "A Study of Sand Movement at South Lake Worth Inlet, Florida," TM 42, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., Oct. 1953.

WATTS, G.M., "Trends in Sand By-Passing Systems," Proceedings of the Coastal Engineering Santa Barbara Specialty Conference, American Society of Civil Engineering, Ch. 34, 1966, pp. 779-804.

WEGGEL, J.R., "Wave Loading on Vertical Sheet-Pile Groins and Jetties," CETA 81-1, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Jan. 1981a.

WEGGEL, J.R., "Weir Sand-Bypassing Systems," SR-8, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Apr. 1981b.

WESTERN CANADA HYDRAULIC LABORATORIES LTD., "Development of a Manual for the Design of Floating Breakwaters, Canadian Manuscript Report of Fisheries and Aquatic Sciences, No. 1629, Nov. 1981.

WIEGEL, R.L., "Sand By-Passing at Santa Barbara, California," Journal of the Waterways and Harbors Division, Vol. 85, WW2, June 1959.

WILLIAMS, S.J., "Geomorphology, Shallow Subbottom Structure, and Sediments of the Atlantic Inner Continental Shelf off Long Island, New York," TP 76-2, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Mar. 1976.

WILLIAMS, S.J., "Sand Resources and Geological Character of Long Island Sound," TP 81-3, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., May 1981.

WILLIAMS, S.J., and DUANE, D.B., "Geomorphology and Sediments of the Inner New York Bight Continental Shelf," TM 45, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., July 1974.

WILLIAMS, S.J., PRINS, D.A., and MEISBURGER, E.P., "Sediment Distribution, Sand Resources, and Geological Character of the Inner Continental Shelf off Galveston County, Texas," MR 79-4, Coasal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., July 1979.

WILLIAMS, S.J., et al., "Sand Resources of Southern Lake Erie, Conneaut to Toledo, Ohio," MR 80-10, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Nov. 1980.

WOODARD, D.W., et al., "The Use of Grasses for Dune Stabilization Along the Gulf Coast with Initial Emphasis on the Texas Coast," Report No. 114, Gulf Universities Research Corporation, Galveston, Tex., 1971.

WOODHOUSE, W.W., Jr., "Use of Vegetation for Dune Stabilization," Proceedings of the Coastal Processes and Shore Protection Seminar, Coastal Plains Center for Marine Development Services, Series No. 1, 1970, pp. 36-39.

WOODHOUSE, W.W., Jr., "Dune Building and Stabilization with Vegetation," SR-3, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Sept. 1978.

WOODHOUSE, W.W., Jr., and HANES, R.E., "Dune Stabilization with Vegetation on the Outer Banks of North Carolina," TM 22, Coastal Engineering Research Center, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Miss., Aug. 1967.

WOODHOUSE, W.W., Jr., SENECA, E.D., and COOPER, A.W., "Use of Sea Oats for Dune Stabilization in the Southeast," Shore and Beach, Vol. 36, No. 2, 1968, pp. 15-21.

ZURMUHLEN, F.H., "The Sand Transfer Plant at Lake Worth Inlet," Proceedings of the Sixth Conference on Coastal Engineering, American Society of Civil Engineers, 1958.

CHAPTER 7

Structural Design: Physical Factors

Praia Bay, Terceira, Azores, 2 March 1970

CONTENTS

CHAPTER 7

STRUCTURAL DESIGN: PHYSICAL FACTORS

Page
I WAVE CHARACTERISTICS 7-1

1. Design Criteria 7-1
2. Representation of Wave Conditions 7-1
3. Determination of Wave Conditions 7-2
4. Selection of Design Wave Conditions 7-3
II WAVE RUNUP, OVERTOPPING, AND TRANSMISSION 7-16
5. Wave Runup 7-16
6. Wave Overtopping 7-43
7. Wave Transmission 7-61
III WAVE FORCES 7-100
8. Forces on Piles 7-101
9. Nonbreaking Wave Forces on Walls 7-161
10. Breaking Wave Forces on Vertical Walls 7-180
11. Broken Waves 7-192
12. Effect of Angle of Wave Approach. 7-198
13. Effect of a Nonvertical Wall 7-200
14. Stability of Rubble Structures 7-202
15. Stability of Rubble Foundations and Toe Protection 7-242
IV VELOCITY FORCES--STABILITY OF CHANNEL REVETMENTS 7-249
v IMPACT FORCES 7-253
VI ICE FORCES 7-253
VII EARTH FORCES 7-256
16. Active Forces 7-256
17. Passive Forces 7-257
18. Cohesive Soils 7-260
19. Structures of Irregular Section 7-260
20. Submerged Material 7-260
21. Uplift Forces 7-260
LITERATURE CITED 7-261
BIBLIOGRAPHY 7-277
TABLES
7-1 Determination of design wave heights 7-15
7-2 Value of r for various slope characteristics 7-32
7-3 Some considerations of breakwater selection 7-64
7-4 Steady flow drag coefficients for supercritical Reynolds numbers 7-139

CONTENTS

TABLES--CONTINUED

Page
7-5 Experimentally determined values of C_{M} 7-145
7-6 Example calculation of wave force variation with phase angle. 7-153
7-7 Comparison of measured and calculated breaker force 7-159
7-8 Suggested K_{D} values for use in determining armor unit weight....7-206
7-9 $\quad \mathrm{H} / \mathrm{H}_{D^{=}=0}$ as a function of cover-layer damage and type of armor unit 7-211
7-10 Types of armor units 7-216
7-11 Concrete armor projects in the United States 7-226
7-12 Weight and size selection dimensions of quarrystone 7-230
7-13 Layer coefficient and porosity for various armor units 7-234
7-14 Effects of ice on marine structures 7-255
7-15 Unit weights and internal friction angles of soils 7-258
7-16 Coefficients and angles of friction 7-260
FIGURES
7-1 Definition of breaker geometry 7-5
7-2 α and β versus H_{b} / gT^{2} 7-6
7-3 Breaker height index $\mathrm{H}_{b} / \mathrm{H}^{-}$versus deepwater wave steepness $\mathrm{H}^{-} / \mathrm{gT}^{2}$ 7-7
7-4 Dimensionless design breaker height versus relative depth at structure 7-10
7-5 Breaker height index H_{b} / H_{o}^{\prime} versus H_{b} / gT^{2} 7-12
7-6 Logic diagram for evaluation of marine environment 7-17
7-7 Definition sketch: wave runup and overtopping 7-18
7-8 Wave runup on smooth, impermeable slopes when $\mathrm{d}_{\delta} / \mathrm{H}_{0}^{\prime}=0$ 7-19
7- Wave runup on smooth, impermeable slopes when $\mathrm{d}_{\boldsymbol{s}} / \mathrm{H}_{0}^{\prime} \approx 0.45$ 7-20
7-10 Wave runup on smooth, impermeable slopes when $d_{\delta} / H_{0}^{-} \approx 0.80$ 7-21

CONTENTS

FIGURES--CONTINUED

Page

7-12 Wave runup on smooth, impermeable slopes when $d_{\delta} / H_{o}^{-} \quad 3.0 \ldots . . .7-23$
7-14 Wave runup on impermeable, vertical wall versus $\mathrm{H}_{\mathrm{o}} / \mathrm{gT}^{2} \ldots$. . $7-25$
7-15 Wave runup on impermeable, quarrystone, $1: 1.5$ slope versus $\mathrm{H}_{\mathrm{O}}^{-} / \mathrm{gT}^{2}$7-26on a 1:10 nearshore slope)7-48
7-28 Overtopping parameters α and Q^{*} (riprapped 1:1.5 structure slope on a 1:10 nearshore slope 9 7-49

CONTENTS

FIGURES--CONTINUED

7-29 Overtopping parameters α and Q^{*} (stepped 1:1.5 structure slope on a $1: 10$ nearshore slope 7-50
Overtopping parameters α and Q_{0}^{*} (curved wall on a $1: 10$nearshore slope)7-51
7-317-32Selected wave transmission results for a submerged breakwater7-65
Wave transmission coefficients for vertical wall and verticalthin-wall breakwaters where $0.0157 \leq \mathrm{d}_{\mathrm{s}} / \mathrm{gT}^{2} \leq 0.0793$7-66
7-39 Wave transmission by overtopping 7-68
7-40 Transmitted wave height/incident significant wave height versus relative freeboard for wave transmission by overtopping due to irregular waves 7-69
7-41 Transmitted wave height as a function of the percentage of exceedance 7-70
7-42 Correction factor, $C F$, to multiply by $\frac{H_{T} p}{H_{s}}$ for $\frac{B}{h}>0.1$.....7-71
7-43 Wave transmission by overtopping for a breakwater with no freeboard 7-74
7-44 Wave runup on breakwaters and riprap 7-75
7-45 Selected wave transmission results for a subaerial breakwater 7-76

CONTENTS

FIGURES--CONTINUED
Page
7-46 Sample wave transmission and reflection coefficients for a smooth, impermeable breakwater. 7-77
7-47 Monochromatic wave transmission, impermeable rubble-moundbreakwater, where $\frac{h}{d_{s}}=1.033$7-78
7-48 where $\frac{h}{d_{s}}=1.133$ $.7-79$
7-49 Influence of structure height on wave transmission for Example Problem 13 7-81
7-50 Wave transmission through a rubble-mound breakwater 7-82
7-51 Wave transmission past a heavily overtopped breakwater with tribar armor units. 7-83
7-52 Wave transmission and reflection coefficients for a breakwater with a flat seaward slope in medium-depth water 7-84
7-53 Wave transmission and reflection coefficients for a mostly armor breakwater in shallow water 7-85
7-54 Monochromatic wave transmission, permeable rubble-mound breakwater, where $\mathrm{h} / \mathrm{d}_{s}=1.033$ 7-86
7-55 Monochromatic wave transmission, permeable rubble-mound breakwater, where $\mathrm{h} / \mathrm{d}_{s}=1.133$ 7-87
7-56 Predicted wave transmission coefficients for a rubble-mound breakwater using the computer program MADSEN. 7-88
7-57 Ponding for a smooth impermeable breakwater with $F=0$ 7-90
7-58 Ponding for rubble-mound breakwaters 7-90
7-59 Cumulative curves of relative wave energy with respect to azimuth from the principal wave direction. 7-91
7-60 Change of a maximum directional concentration parameter, $S_{\max }$, due to wave refraction in shallow water 7-917-61
Diffraction diagrams of a semi-infinite breakwater for directional random waves of normal incidence. 7-92
Diffraction diagrams of a breakwater gap with $B / L=1.0$ for directional random waves of normal incidence. 7-95

CONTENTS

FIGURES--CONTINUED

Diffraction diagrams of a breakwater gap with $B / L=2.0$ for directional random waves of normal incidencedirectional random waves of normal incidence7-96
Diffraction diagrams of a breakwater gap with $B / L=4.0$ for directional random waves of normal incidence 7-97
Diffraction diagrams of a breakwater gap with $B / L=8.0$ for directional random waves of normal incidence 7-98
Classification of wave force problems by type of wave action and by structure type 7-100
Definition sketch of wave forces on a vertical cylinder 7-102
Relative wavelength and pressure factor versus $\mathrm{d} / \mathrm{gT}^{2}$ 7-104
Ratio of crest elevation above still-water level to wave height..7-107
Wavelength correction factor for finite amplitude effects. 7-108
$K_{i m}$ versus relative depth, d / gT^{2} 7-113
$K_{D m}$ versus relative depth, d / gT^{2} 7-114Inertia force moment arm, $S_{i m}$, versus relative depth,$\mathrm{d} / \mathrm{gT}^{2}$7-115
Drag force moment $\operatorname{arm}, S_{D m}$, versus relative depth, $\mathrm{d} / \mathrm{gT}^{2}$. 7-116
Breaking wave height and regions of validity of various wave theories 7-117
Isolines of ϕ_{m} versus H / gT^{2} and $\mathrm{d} / \mathrm{gT}^{2} \ldots(\mathrm{~W}=0.5)$ 7-119
Isolines of ϕ versus $H / g T^{2}$ and $d / g T^{2} \ldots(W=0.1)$ 7-120
Isolines of ϕ_{m} versus $H / g T^{2}$ and $d / g T^{2} \ldots(W=0.5)$ 7-121
Isolines of ϕ m versus H / gT^{2} and $d / \mathrm{gT}^{2} \ldots(\mathrm{~W}=1.0)$ 7-122
Isolines of α_{m} versus H / gT^{2} and $d / \mathrm{gT}^{2} \ldots(\mathrm{~W}=0.5)$ 7-123
Isolines of α_{m} versus $\mathrm{H} / \mathrm{gT}^{2}$ and $d / \mathrm{gT}^{2} \ldots(W=0.1)$ 7-124
Isolines of α_{m} versus $\mathrm{H} / \mathrm{gT}^{2}$ and $d / g T^{2} \ldots(W=0.5)$ 7-125
Isolines of α_{m} versus $\mathrm{H} / \mathrm{gT}^{2}$ and $\mathrm{d} / \mathrm{gT}^{2} \ldots(\mathrm{~W}=1.0)$ 7-126
Variation of C_{L} / C_{D} with Keulegan-Carpenter number and H/gT ${ }^{2}$...7-134

CONTENTS

FIGURES--CONTINUED

Page
7-85 Variation of drag coefficient C_{D} with Reynolds number R_{e} 7-137
7-86 Definition sketch: calculation of wave forces on a group of piles that are structurally connected 7-151
7-87 Definition sketch: calculation of wave forces on a nonvertical pile 7-156
7-88 Definition of terms: nonbreaking wave forces 7-162
7-89 Pressure distributions for nonbreaking waves 7-163
7-90 Nonbreaking waves; $x=1.0$ 7-164
7-91 Nonbreaking wave forces; $x=1.0$ 7-165
7-92 Nonbreaking wave moment; $\chi=1.0$ 7-166
7-93 Nonbreaking waves; $x=0.9$ 7-167
7-94 Nonbreaking wave forces; $\chi=0.9$ 7-168
7-95 Nonbreaking wave moment; $x=0.9$ 7-169
7-96 Pressure distribution on wall of low height $.7-174$
7-97 Force and moment reduction factors 7-175
7-98 Pressure distribution on wall on rubble foundation 7-178
7-99 Minikin wave pressure diagram 7-181
7-100 Dimensionless Minikin wave pressure and force 7-185
7-101 Dimensionless Minikin wave pressure and force 7-188
7-102 Minikin force reduction factor 7-189
7-103 Minikin moment reduction for low wall 7-190
7-104 Wave pressures from broken waves: wall seaward of still-water line $.7-193$
7-105 Wave pressures from broken waves: wall landward of still-water line 7-195
7-106 Effect of angle of wave approach: plan view 7-199
Page
7-107 Wall shapes 7-200
7-108 Views of the tetrapod, quadripod, tribar, and dolos armor units 7-217
7-109 Tetrapod specifications 7-218
7-110 Quadripod specifications 7-219
7-111 Tribar specifications 7-220
7-112 Dolos specifications 7-221
7-113 Toskane specifications 7-222
7-114 Modified cube specifications 7-223
7-115 Hexapod specifications 7-224
7-116 Rubble-mound section for seaward wave exposure with zero-to- moderate overtopping conditions 7-227
7-117 Rubble-mound section for wave exposure on both sides with moderate overtopping conditions 7-228
7-118 Logic diagram for preliminary design of rubble structure 7-231
7-119 Logic diagram for evaluation of preliminary design 7-232
7-120 Stability number N_{s} for rubble foundation and toe protection 7-244
7-121 Revetment toe scour aprons for severe wave scour 7-248
7-122 Definition sketch for Coulomb earth force equation. 7-259
7-123 Active earth force for simple Rankine case 7-259

STRUCTURAL DESIGN: PHYSICAL FACTORS

I. WAVE CHARACTERISTICS

```
1. Design Criteria.
```

Coastal structures must be designed to satisfy a number of sometimes conflicting criteria, including structural stability, functional performance, environmental impact, life-cycle cost, and other constraints which add challenge to the designer's task. Structural stability criteria are most. often stated in terms of the extreme conditions which a coastal structure must survive without sustaining significant damage. The conditions usually include wave conditions of some infrequent recurrence interval, say 50 or 100 years, but may also include a seismic event (an earthquake or tsunami), a change in adjacent water depths, or the impact of a large vessel. The extent to which these "survival" criteria may be satisfied must sometimes be compromised for the sake of reducing construction costs. Analysis may prove that the consequences of occasional damage are more affordable than the first cost of a structure invulnerable to the effects of extremely rare events. A range of survival criteria should be investigated to determine the optimum final choice.

Functional performance criteria are stated in terms of the desired effect of the structure on the nearby environment, or in terms of its intended function. For example, the performance criteria for a breakwater intended to protect a harbor in its lee should be stated in terms of the most extreme wave conditions acceptable in the harbor area; the features of the breakwater affecting wave transmission can then be designed to satisfy this criterion. The performance criteria for a groin intended to cause accretion of sand at a certain location will be dissimilar to those for a breakwater. Performance criteria may also require compromise for the sake of first cost, since repairing the consequences of performance limitations could be more affordable. The high construction cost of most coastal structures requires that risk analysis and life-cycle costing be an integral part of each design effort.

2. Representation of Wave Conditions.

Wind-generated waves produce the most powerful forces to which coastal structures are subjected (except for seismic sea waves). Wave characteristics are usually determined for deep water and then analytically propagated shoreward to the structure. Deepwater significant wave height H_{0} and significant wave period $\mathrm{T}_{\boldsymbol{s}}$ may be determined if wind speed, wind duration, and fetch length data are available (see Ch. 3, Sec. V). This information, with water level data, is used to perform refraction and shoaling analyses to determine wave conditions at the site.

Wave conditions at a structure site at any time depend critically on the water level. Consequently, a design stillwater level (SWL) or range of water levels must be established in determining wave forces on a structure. Structures may be subjected to radically different types of wave action as the water level at the site varies. A given structure might be subjected to
nonbreaking, breaking, and broken waves during different stages of a tidal cycle. The wave action a structure is subjected to may also vary along its length at a given time. This is true for structures oriented perpendicular to the shoreline such as groins and jetties. The critical section of these structures may be shoreward of the seaward end of the structure, depending on structure crest elevation, tidal range, and bottom profile.

Detailed discussion of the effects of astronomical tides and windgenerated surges in establishing water levels is presented in Chapter 3, WAVE AND WATER LEVEL PREDICTIONS. In Chapter 7, it is assumed that the methods of Chapter 3 have been applied to determine design water levels.

The wave height usually derived from statistical analysis of synoptic weather charts or other historical data to represent wave conditions in an extreme event is the significant height H_{s}. Assuming a Rayleigh wave height distribution, H_{s} may be further defined in approximate relation to other height parameters of the statistical wave height distribution in deep water:
$\mathrm{H}_{1 / 3}$ or $\mathrm{H}_{s} \quad=\begin{aligned} & \text { average of } \\ & \text { tion of } \\ & H\end{aligned}$ highest $1 / 3$ of all waves (an alternate definition of H_{s} sometimes applied is 4 times the standard deviation of the sea surface elevations, often denoted as H_{m})

$$
\begin{align*}
& \mathrm{H}_{10} \approx 1.27 \mathrm{H}_{s}=\text { average of highest } 10 \text { percent of all waves } \tag{7-1}\\
& \mathrm{H}_{5} \approx 1.37 \mathrm{H}_{s}=\text { average of highest } 5 \text { percent of all waves } \tag{7-2}\\
& \mathrm{H}_{1} \approx 1.67 \mathrm{H}_{S}=\text { average of highest } 1 \text { percent of all waves } \tag{7-3}
\end{align*}
$$

Advances in the theoretical and empirical study of surface waves in recent years have added great emphasis to the analysis of wave energy spectra in estimating wave conditions for design purposes. Representation of wave conditions in an extreme event by wave energy as a function of frequency provides much more information for use in engineering designs. The physical processes which govern the transformation of wave energy are highly sensitive to wave period, and spectral considerations take adequate account of this fact. An important parameter in discussing wave energy spectra is the energybased wave height parameter H_{m}, which corresponds to the significant wave height, H_{s}, under most conditions. An equally important parameter is the peak spectral period, T_{p}, which is the inverse of the dominant frequency of a wave energy spectrum. ${ }^{P}$ The peak spectral period, T_{p}, is comparable to the significant wave period, T_{s}, in many situations. The total energy, E , and the energy in each frequency band, $E(\omega)$, are also of importance (see Ch. 3, Sec. II,3, Energy Spectra of Waves).

3. Determination of Wave Conditions.

All wave data applicable to the project site should be evaluated. Visual observation of storm waves, while difficult to confirm, may provide an indication of wave height, period, direction, storm duration, and frequency of occurrence. Instrumentation has been developed for recording wave height,
period, and direction at a point. Wave direction information is usually necessary for design analysis, but may be estimated from directional wind data if physical measurements of wave direction are not available. Visual observations of wave direction during exteme events are important in verifying estimates made from wind data. If reliable visual shore or ship observations of wave direction are not available, hindcast procedures (Ch. 3, Sec. V, SIMPLIFIED METHODS FOR ESTIMATING WAVE CONDITIONS) must be used. Reliable deepwater wave data can be analyzed to provide the necessary shallow-water wave data. (See Ch. 2, Sec. II, $3, \mathrm{~h}$, Wave Energy and Power, and Ch. 2, Sec. III, WAVE REFRACTION, and IV, WAVE DIFFRACTION.)

4. Selection of Design Wave Conditions.

The choice of design wave conditions for structural stability as well as for functional performance should consider whether the structure is subjected to the attack of nonbreaking, breaking, or broken waves and on the geometrical and porosity characteristics of the structure (Jackson, 1968a). Once wave characteristics have been estimated, the next step is to determine if wave height at the site is controlled by water depth (see Ch. 2, Sec. VI, BREAKING WAVES). The type of wave action experienced by a structure may vary with position along the structure and with water level and time at a given structure section. For this reason, wave conditions should be estimated at various points along a structure and for various water levels. Critical wave conditions that result in maximum forces on structures like groins and jetties may occur at a location other than the seaward end of the structure. This possibility should be considered in choosing design wave and water level conditions.

Many analytical procedures currently available to estimate the maximum wave forces on structures or to compute the appropriate weights of primary armor units require the choice of a single design wave height and period to represent the spectrum of wave conditions during an extreme event. The peak spectral period is the best choice in most cases as a design wave period (see Ch. 3, Sec. V, SIMPLIFIED METHODS FOR ESTIMATING WAVE CONDITIONS). The choice of a design wave height should relate to the site conditions, the construction methods and materials to be used, and the reliability of the physical data available.

If breaking in shallow water does not limit wave height, a nonbreaking wave condition exists. For nonbreaking waves, the design height is selected from a statistical height distribution. The selected design height depends on whether the structure is defined as rigid, semirigid, or flexible. As a rule of thumb, the design wave is selected as follows. For rigid structures, such as cantilever steel sheet-pile walls, where a high wave within the wave train might cause failure of the entire structure, the design wave height is normally based on H_{1}. For semirigid structures, the design wave height is selected from a range of H_{10} to H_{1}. Steel sheet-pile cell structures are semirigid and can absorb wave pounding; therefore, a design wave height of H_{10} may be used. For flexible structures, such as rubble-mound or riprap structures, the design wave height usually ranges from H_{5} to the significant wave height $H_{\mathcal{S}} . \mathrm{H}_{10}$ is currently favored for most coastal breakwaters or jetties. Waves higher than the design wave height impinging on flexible structures seldom create serious damage for short durations of extreme wave
action. When an individual stone or armor unit is displaced by a high wave, smaller waves of the train may move it to a more stable position on the slope.

Damage to rubble-mound structures is usually progressive, and an extended period of destructive wave action is required before a structure ceases to provide protection. It is therefore necessary in selecting a design wave to consider both frequency of occurrence of damaging waves and economics of construction, protection, and maintenance. On the Atlantic and gulf coasts of the United States, hurricanes may provide the design criteria. The frequency of occurrence of the design hurricane at any site may range from once in 20 to once in 100 years. On the North Pacific coast of the United States, the weather pattern is more uniform; severe storms are likely each year. The use of H as a design height under these conditions could result in extensive annual damage due to a frequency and duration of waves greater than H in the spectrum. Here, a higher design wave of H_{10} or H_{5} may be advisắble. Selection of a design height between H_{s} and H_{5} is based on the following factors:
(a) Degree of structural damage tolerable and associated maintenance and repair costs (risk analysis and life-cycle costing).
(b) Availability of construction materials and equipment.
(c) Reliability of data used to estimate wave conditions.
a. Breaking Waves. Selection of a design wave height should consider whether a structure is subject to attack by breaking waves. It has been commonly assumed that a structure sited at a water depth d_{S} (measured at design water stage) will be subjected to breaking waves if $\mathrm{d}_{s} \leq 1.3 \mathrm{H}$ where $H=$ design wave height . Study of the breaking process indicates that this assumption is not always valid. The breaking point is defined as the point where foam first appears on the wave crest, where the front face of the wave first becomes vertical, or where the wave crest first begins to curl over the face of the wave (see Ch. 2, Sec. VI, BREAKING WAVES). The breaking point is an intermediate point in the breaking process between the first stages of instability and the area of complete breaking. Therefore, the depth that initiates breaking directly against a structure is actually some distance seaward of the structure and not necessarily the depth at the structure toe. The presence of a structure on a beach also modifies the breaker location and height. Jackson (1968a) has evaluated the effect of rubble structures on the breaking proccess. Additional research is required to fully evaluate the influence of structures.

Hedar (1965) suggested that the breaking process extends over a distance equal to half the shallow-water wavelength. This wavelength is based on the depth at this seaward position. On flat slopes, the resultant height of a wave breaking against the structure varies only a small amount with nearshore slope. A slope of 1 on 15 might increase the design breaking wave height by 20 to 80 percent depending on deepwater wavelength or period. Galvin (1968, 1969) indicated a relationship between the distance traveled by a plunging breaker and the wave height at breaking H_{b}. The relationship between the breaker travel distance x_{p} and the breaker height H_{b} depends on the nearshore slope and was expressed by Galvin (1969) as:

$$
\begin{equation*}
x_{p}=\tau_{p} H_{b}=(4.0-9.25 \mathrm{~m}) \mathrm{H}_{b} \tag{7-4}
\end{equation*}
$$

where m is the nearshore slope (ratio of vertical to horizontal distance) and ${ }^{\tau} p=(4.0-9.25 \mathrm{~m})$ is the dimensionless plunge distance (see Fig. 7-1).

Figure 7-1. Definition of breaker geometry.
Analysis of experimental data shows that the relationship between depth at. breaking d_{b} and breaker height H_{b} is more complex than indicated by the equation $\mathrm{d}_{b}=1.3 \mathrm{H}_{b}$. Consequently, the expression $\mathrm{d}_{b}=1.3 \mathrm{~h}_{b}$ should not be used for design purposes. The dimensionless ratio $\mathrm{d}_{b} / \mathrm{H}_{b}$ varies with nearshore slope m and incident wave steepness H_{b} / gT^{2} as indicated in Figure 7-2. Since experimental measurements of d_{b} / H_{b} exhibit scatter, even when made in laboratory flumes, two sets of curves are presented in Figure 7-2. The curve of α versus H_{b} / gT^{2} represents an upper limit of experimentally observed values of d_{b} / H_{b}, hence $\alpha=\left(d_{b} / H_{b}\right)_{\text {max }}$. Similarly, β is an approximate lower limit of measurements of d_{b} / H_{b}; therefore, $\beta=\left(d_{b} / H_{b}\right)_{\text {min }}$. Figure 7-2 can be used with Figure 7-3 to determine the water depth in which an incident wave of known period and unrefracted deepwater height will break.

* * * * * * * * * * * * * * * * *EXAMPLE PROBLEM 1 * * * * * * * * * * * * * *

GIVEN: A Wave with period $T=10 \mathrm{~s}$, and an unrefracted deep-water height of $\mathrm{H}_{o}^{\prime}=1.5$ meters (4.9 ft) advancing shoreward over a nearshore slope of $\mathrm{m}=$ 0.050 (1:20) .

Figure 7-2. α and β versus H / gT^{2} 。

FIND: The range of depths where breaking may start.
SOLUTION: The breaker height can be found in Figure 7-3. Calculate

$$
\frac{\mathrm{H}_{O}^{\prime}}{\mathrm{gT}^{2}}=\frac{1.5}{(9.8)(10)^{2}}=0.00153
$$

and enter the figure to the curve for an $m=0.05$ or $1: 20$ slope. $H_{b} / \mathrm{H}_{0}^{\prime}$ is read from the figure

$$
\frac{\mathrm{H}_{b}}{\mathrm{H}_{0}^{\prime}}=1.65
$$

Therefore

$$
\mathrm{H}_{b}=1.65\left(\mathrm{H}_{o}^{-}\right)=1.65(1.5)=2.5 \mathrm{~m}(8.2 \mathrm{ft})
$$

$\mathrm{H}_{b} / \mathrm{gT}^{2}$ may now be computed

$$
\frac{\mathrm{H}_{b}}{\mathrm{gT}^{2}}=\frac{2.5}{(9.8)(10)^{2}}=0.00255
$$

Entering Figure 7-2 with the computed value of $\mathrm{H}_{b} / \mathrm{gT}^{2}$ the value of α is found to be 1.51 and the value of β for a beach slope of 0.050 is 0.93 . Then

$$
\begin{aligned}
& \left(\mathrm{d}_{b}\right)_{\max }=\alpha \mathrm{H}_{b}=1.51(2.5)=3.8 \mathrm{~m}(12.5 \mathrm{ft}) \\
& \left(\mathrm{d}_{b}\right)_{\min }=\beta \mathrm{H}_{b}=0.93(2.5)=2.3 \mathrm{~m}(7.5 \mathrm{ft})
\end{aligned}
$$

Where wave characteristics are not significantly modified by the presence of structures, incident waves generally will break when the depth is slightly greater than $\left(d_{b}\right)_{\min }$. As wave-reflection effects of shore structures begin to influence breaking, depth of breaking increases and the region of breaking moves farther seaward. As illustrated by the example, a structure sited on $a \operatorname{lon} 20$ slope under action of the given incident wave ($\mathrm{H}_{0}^{\prime}=1.5 \mathrm{~m}(4.9 \mathrm{ft}) ; \mathrm{T}=10 \mathrm{~s}$) could be subjected to waves breaking directly on it, if the depth at the structure toe were between $\left(d_{b}\right)_{m i n}=$ $2.3 \mathrm{~m}(7.5 \mathrm{ft})$ and $\left(\mathrm{d}_{b}\right)_{\text {max }}=3.8 \mathrm{~m}(12.5 \mathrm{ft})$.

NOTE: Final answers should be rounded to reflect the accuracy of the original given data and assumptions.
b. Design Breaker Height. When designing for a breaking wave condition, it is desirable to determine the maximum breaker height to which the structure might reasonably be subjected. The design breaker height H_{b} depends on the depth of water some distance seaward from the structure toe where the wave first begins to break. This depth varies with tidal stage. The design
breaker height depends, therefore, on critical design depth at the structure toe, slope on which the structure is built, incident wave steepness, and distance traveled by the wave during breaking.

Assuming that the design wave is one that plunges on the structure, design breaker height may be determined from:

$$
\begin{equation*}
\mathrm{H}_{b}=\frac{\mathrm{d}_{\boldsymbol{s}}}{\beta-\mathrm{m} \tau_{p}} \tag{7-5}
\end{equation*}
$$

where d_{δ} is depth at the structure toe, β is the ratio of breaking depth to breaker height $\mathrm{d}_{b} / \mathrm{H}_{b}, \mathrm{~m}$ is the nearshore slope, and τ_{p} is the dimensionless plunge distance x_{p} / H_{b} from equation (7-4). p

The magnitude of β to be used in equation (7-5) cannot be directly known until H_{b} is evaluated. To aid in finding H_{b}, Figure $7-4$ has been derived from equations (7-4) and (7-5) using β values from Figure 7-2. If maximum design depth at the structure and incident wave period are known, design breaker height can be obtained using Figure 7-4.

* * * * * * * * * * * * * * * * EXAMPLE PROBLEM $2 * * * * * * * * * * * * * *$ GIVEN:
(a) Design depth structure toe, $d_{\delta}=2.5 \mathrm{~m}$ (8.2 ft)
(b) Slope in front of structure is 1 on 20 , or $m=0.050$.
(c) Range of wave periods to be considered in design

$$
\begin{aligned}
& \mathrm{T}=6 \mathrm{~s} \text { (minimum) } \\
& \mathrm{T}=10 \mathrm{~s} \text { (maximum) }
\end{aligned}
$$

FIND: Maximum breaker height against the structure for the maxium and minimum wave periods.

SOLUTION: Computations are shown for the 6 -second wave; only the final results for the 10 -second wave are given.

From the given information, compute

$$
\frac{\mathrm{d}_{s}}{\mathrm{gT}^{2}}=\frac{2.5}{(9.8)(6)^{2}}=0.0071(\mathrm{~T}=6 \mathrm{~s})
$$

Enter Figure $7-4$ with the computed value of $\mathrm{d}_{g} / \mathrm{gT}^{2}$ and determine value of H_{b} / d_{s} from the curve for a slope of $m=0.050$.

$$
\frac{\mathrm{d}_{s}}{\mathrm{gT}^{2}}=0.0071 ; \frac{\mathrm{H}_{b}}{\mathrm{~d}_{s}}=1.10(\mathrm{~T}=6 \mathrm{~s})
$$

Figure 7-4. Dimensionless design breaker height versus relative depth at structure.

Note that H_{b} / d_{s} is not identical with H_{b} / d_{b} where d_{b} is the depth at breaking and d^{δ} is the depth at the structure. In geheral, because of nearshore slope, ${ }^{s} \mathrm{~d}_{s}\left\langle\mathrm{~d}_{b}\right.$; therefore $\mathrm{H}_{b} / \mathrm{d}_{s}>\mathrm{H}_{b} / \mathrm{d}_{b}$.
For the example, breaker height can now be computed from

$$
\mathrm{H}_{b}=1.10 \mathrm{~d}_{s}=1.10(2.5)=2.8 \mathrm{~m}(9.2 \mathrm{ft})(\mathrm{T}=6 \mathrm{~s})
$$

For the 10 -second wave, a similar analysis gives

$$
H_{b}=1.27 \mathrm{~d}_{s}=1.27(2.5)=3.2 \mathrm{~m}(10.5 \mathrm{ft})(\mathrm{T}=10 \mathrm{~s})
$$

As illustrated by the example problem, longer period waves result in higher design breakers; therefore, the greatest breaker height which could possibly occur against a structure for a given design depth and nearshore slope is found by entering Figure $7-4$ with $d_{s} / \mathrm{gT}^{2}=0$ (infinite period). For the example problem

$$
\begin{aligned}
& \frac{\mathrm{d}_{s}}{\mathrm{gT}^{2}}=0 ; \frac{\mathrm{H}_{b}}{\mathrm{~d}_{s}}=1.41(\mathrm{~m}=0.050) \\
& \mathrm{H}_{b}=1.41 \mathrm{~d}_{s}=1.41(2.5)=3.5 \mathrm{~m}(11.6 \mathrm{ft})
\end{aligned}
$$

*

It is often of interest to know the deepwater wave height associated with the design height obtained from Figure 7-4. Comparison of the design associated deepwater wave height determined from Figure 7-4 with actual deepwater wave statistics characteristic of the site will give some indication of how of ten the structure could be subjected to breakers as high as the design breaker. Deepwater height may be found in Figure 7-5 and information obtained by a refraction analysis (see Ch. 2, Sec. III, WAVE REFRACTION). Figure $7-5$ is based on observations by Iversen (1952a, 1952b), as modified by Goda (1970a), of periodic waves breaking on impermeable, smooth, uniform laboratory slopes. Figure 7-5 is a modified form of Figure 7-3.

* * * * * * * * * * * * * * * * EXAMPLE PROBLEM $3 * * * * * * * * * * * * * * *$

GIVEN:
(a)

$$
H_{b}=2.8 \mathrm{~m}(9.2 \mathrm{ft}) \quad(T=6 \mathrm{~s})
$$

and

$$
H_{b}=3.2 \mathrm{~m}(10.5 \mathrm{ft}) \quad \text { (see previous example) }(T=10 \mathrm{~s})
$$

(b) Assume that refraction analysis of the structure site gives

$$
\mathrm{K}_{R}=\sqrt{\frac{\mathrm{b}_{0}}{\mathrm{~b}}=0.85} \quad(\mathrm{~T}=6 \mathrm{~s})
$$

and

$$
\mathrm{K}_{R}=0.75 \quad(\mathrm{~T}=10 \mathrm{~s})
$$

for a given deepwater direction of wave approach (see Ch. 2, Sec. III, WAVE REFRACTION)。

Figure 7-5. Breaker height index H_{b} / H_{o} versus H_{b} / gT^{2}.

FIND: The deepwater height H_{o} of the waves resulting in the given breaker heights H_{b}
SOLUTION: Calculate $\mathrm{H}_{b} / \mathrm{gT}^{2}$ for each wave condition to be investigated.

$$
\frac{\mathrm{H}_{b}}{\mathrm{gT}^{2}}=\frac{2.8}{(9.8)(6)^{2}}=0.0079 \quad(\mathrm{~T}=6 \mathrm{~s})
$$

With the computed value of $\mathrm{H}_{b} / \mathrm{gT}^{2}$ enter Figure $7-5$ to the curve for a slope of $m=0.05$ and determine H_{b} / H_{o}^{-}which may be considered an ultimate shoaling coefficient or the shoaling coefficient when breaking occurs.

$$
\frac{\mathrm{H}_{b}}{\mathrm{gT}^{2}}=0.0079 ; \frac{\mathrm{H}_{b}}{\mathrm{H}_{0}^{\prime}}=1.16(\mathrm{~T}=6 \mathrm{~s})
$$

With the value of $\mathrm{H}_{b} / \mathrm{H}_{O}^{\prime}$ thus obtained and with the value of K_{R} obtained from a refraction analysis, the deepwater wave height resulting in the design breaker may be found with equation (7-6).

$$
\begin{equation*}
\mathrm{H}_{0}=\frac{\mathrm{H}_{b}}{\mathrm{~K}_{\mathrm{R}}\left(\mathrm{H}_{b} / \mathrm{H}_{o}^{\prime}\right)} \tag{7-6}
\end{equation*}
$$

H_{O} is the actual deepwater wave height, where H_{O} is the wave height in deep water if no refraction occurred ($H_{0}^{\prime}=$ unrefracted deepwater height). Where the bathmetry is such that significant wave energy is dissipated by bottom friction as the waves travel from deep water to the structure site, the computed deepwater height should be increased accordingly (see Ch. 3, Sec. VII, HURRICANE WAVES, for a discussion of wave height attenuation by bottom friction).

Applying equation (7-6) to the example problem gives

$$
\mathrm{H}_{0}=\frac{2.8}{(0.85)(1.16)}=2.8 \mathrm{~m}(9.2 \mathrm{ft}) \quad(\mathrm{T}=6 \mathrm{~s})
$$

A similar analysis for the 10 -second wave gives

$$
\mathrm{H}_{0}=2.8 \mathrm{~m}(9.2 \mathrm{ft}) \quad(\mathrm{T}=10 \mathrm{~s})
$$

A wave advancing from the direction for which refraction was analyzed, and with a height in deep water greater than the computed H_{O}, will break at a distance greater than x_{p} feet in front of the structure.

Waves with a deepwater height less than the H_{0} computed above could break directly against the structure; however, the corresponding breaker height will be less than the design breaker height determined from Figure 7-4.
c. Nonbreaking Waves. Since statistical hindcast wave data are normally available for deepwater conditions ($\mathrm{d}>\mathrm{L}_{\mathrm{O}} / 2$) or for depth conditions some distance from the shore, refraction analysis is necessary to determine wave characteristics at a nearshore site (see Ch. 2, Sec. III, WAVE REFRACTION). Where the continental shelf is broad and shallow, as in the Gulf of Mexico, it is advisable to allow for a large energy loss due to bottom friction (Savage, 1953), (Bretschneider, 1954a, b) (see Ch. 3, Sec. VII, HURRICANE WAVES).

General procedures for developing the height and direction of the design wave by use of refraction diagrams follow:

From the site, draw a set of refraction fans for the various waves that might be expected (use wave period increments of no more than 2 seconds) and determine refraction coefficients by the method given in Chapter 2, Section III, WAVE REFRACTION. Tabulate refraction coefficients determined for the selected wave periods and for each deepwater direction of approach. The statistical wave data from synoptic weather charts or other sources may then be reviewed to determine if waves having directions and periods with large refraction coefficients will occur frequently.

The deepwater wave height, adjusted by refraction and shoaling coefficients, that gives the highest significant wave height at the structure will indicate direction of approach and period of the design wave. The inshore height so determined is the design significant wave height. A typical example of such an analysis is shown in Table 7-1. In this example, although the highest significant deepwater waves approached from directions ranging from W to NW , the refraction study indicated that higher inshore significant waves may be expected from more southerly directions.

The accuracy of determining the shallow-water design wave by a refraction analysis is decreased by highly irregular bottom conditions. For irregular bottom topography, field observations including the use of aerial photos or hydraulic model tests may be required to obtain valid refraction information.
d. Bathymetry Changes at Structure Site. The effect of a proposed structure on conditions influencing wave climate in its vicinity should also be considered. The presence of a structure might cause significant deepening of the water immediately in front of it. This deepening, resulting from scour during storms may increase the design depth and consequently the design breaker height if a breaking wave condition is assumed for design. If the material removed by scour at the structure is deposited offshore as a bar, it may provide protection to the structure by causing large waves to break farther seaward. Experiments by Russell and Inglis (1953), van Weele (1965), Kadib (1962), and Chesnutt (1971), provide information for estimating changes in depth. A general rule for estimating the scour at the toe of a wall is given in Chapter 5.
e. Summary--Evaluating the Marine Environment. The design process of evaluating wave and water level conditions at a structure site is summarized in Figure 7-6. The path taken through the figure will generally depend on the type, purpose, and location of a proposed structure and on the availability of data. Design depths and wave conditions at a structure can usually be determined concurrently. However, applying these design conditions to structural design requires evaluation of water levels and wave conditions that

Table 7-1. Determination of design wave heights.

1	2	3	4	5
Direction	Significant Deepwater Wave Height (m)	Wave Period (s)	```Combined Refraction and Shoaling Coefficients}\mp@subsup{}{}{1 (}\mp@subsup{\textrm{K}}{R}{}\mp@subsup{\textrm{K}}{\boldsymbol{S}}{```	Refracted and Shoaled Wave Height (m)
NW	5.0	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{aligned} & 0.20 \\ & 0.14 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.7 \\ & 0.4 \end{aligned}$
WNW	4.0	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{aligned} & 0.30 \\ & 0.24 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.0 \\ & 0.7 \end{aligned}$
W	3.0	$\begin{aligned} & 10 \\ & 12 \\ & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.62 \\ & 0.40 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.9 \\ & 1.2 \\ & 1.5 \end{aligned}$
WSW	3.0	$\begin{aligned} & 10 \\ & 12 \\ & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 1.20 \\ & 1.00 \\ & 0.70 \\ & 0.70 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.0 \\ & 2.1 \\ & 2.1 \end{aligned}$
SW	2.8	$\begin{aligned} & 12 \\ & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 1.44 \\ & 1.18 \\ & 0.80 \end{aligned}$	$\begin{aligned} & 4.0^{2} \\ & 3.3 \\ & 2.2 \end{aligned}$

1 Refraction coefficient, $K_{R}=\sqrt{\mathrm{b}_{o} / \mathrm{b}}$ at design water level. Shoaling coefficient, $\mathrm{K}_{\boldsymbol{s}}=\mathrm{H} / \mathrm{H}_{O}$ at design water level.
2 Adopted as the significant design wave height.
NOTES:
Columns 1, 2, and 3 are taken from the statistical wave data as determined from synoptic weather charts.

Columns 4 is determined from the relative distances between two adjacent orthogonals in deep water and shallow water, and the shoaling coefficient.

Column 5 is the product of columns 2 and 4.
can reasonably be assumed to occur simultaneously at the site. Where hurricanes cross the coast, high water levels resulting from storm surge and extreme wave action generated by the storm occur together and usually provide critical design conditions. Design water levels and wave conditions are needed for refraction and diffraction analyses, and these analyses must follow establishment of design water levels and design wave conditions.

The frequency of occurrence of adopted design conditions and the frequency of occurrence and duration of a range of reasonable combinations of water level and wave action are required for an adequate economic evaluation any proposed shore protection scheme.
II. WAVE RUNUP, OVERTOPPING, AND TRANSMISSION

1. Wave Runup

a. Regular (Monochromatic) Waves. The vertical height above the stillwater level to which water from an incident wave will run up the face of a structure determines the required structure height if wave overtopping cannot be permitted (see Fig. 7-7 for definitions). Runup depends on structure shape and roughness, water depth at structure toe, bottom slope in front of a structure, and incident wave characteristics. Because of the large number of variables involved, a complete description is not available of the runup phenomenon in terms of all possible ranges of the geometric variables and wave conditions. Numerous laboratory investigations have been conducted, but mostly for runup on smooth, impermeable slopes. Hall and Watts (1953) investigated runup of solitary waves on impermeable slopes; Saville (1956) investigated runup by periodic waves. Dai and Kamel (1969) investigated the runup and rundown of waves on rubble breakwaters. Savage (1958) studied effects of structure roughness and slope permeability. Miller (1968) investigated runup of undular and fully broken waves on three beaches of different roughnesses. LeMehaute (1963) and Freeman and LeMehaute (1964) studied long-period wave runup analytically. Keller et al. (1960), Ho and Meyer (1962), and Shen and Meyer (1963) studied the motion of a fully broken wave and its runup on a sloping beach.

Figures 7-8 through 7-13 summarize results for small-scale laboratory tests of runup of regular (monochromatic) waves on smooth impermeable slopes (Saville, 1958a). The curves are in dimensionless form for the relative runup $\mathrm{R} / \mathrm{H}_{O}^{\prime}$ as a function of deepwater wave steepness and structure slope, where R is the runup height measured (vertically) from the SWL and H^{\prime} is the unrefracted deepwater wave height (see Figure 7-7 for definitions). Results predicted by Figures 7-8 through 7-12 are probably smaller than the runup on prototype structures because of the inability to scale roughness effects in small-scale laboratory tests. Runup values from Figures 7-8 through 7-12 can be adjusted for scale effects by using Figure 7-13.

Runup on impermeable structures having quarrystone slopes and runup on vertical, stepped, curved and Galveston-type recurved seawalls have been studied on laboratory-scale models by Saville (1955, 1956). The results are

Figure 7-6. Logic diagram for evaluation of marine environment.

Figure 7-7. Definition sketch: wave runup and overtopping.
shown in Figures 7-14 through 7-18. Effects of using graded riprap on the face of an impermeable structure (as opposed to quarrystone of uniform site for which Figure 7-15 was obtained) are presented in Figure 7-19 for a 1 on 2 graded riprap slope. Wave rundown for the same slope is also presented in Figure 7-19. Runup on permeable mubble slopes as a function of structure slope and $\mathrm{H}_{\mathrm{O}}^{\prime} / \mathrm{gT}^{2}$ is compared with runup on smooth slopes in Figure 7-20. Corrections for scale effects, using the curves in Figure 7-13, should be applied to runup values obtained from Figures 7-8 through 7-12 and 7-14 through 7-18. The values of runup obtained from Figure 7-19 and 7-20 are assumed directly applicable to prototype structures without correction for scale effects.

As previously discussed, Figures 7-8 through 7-20 provide design curves for smooth and rough slopes, as well as various wall configurations. As noted, there are considerable data on smooth slopes for a wide range of d / H^{-} values, whereas the rough-slope data are limited to values of $\mathrm{d}_{s} / \mathrm{H}_{0}^{\prime}>3{ }^{s}$. It is frequently necessary to determine the wave runup on permeable rubble structures for specific conditions for which model tests have not been conducted, such as breaking waves for $\mathrm{d}_{s} / \mathrm{H}_{o}^{\prime}<3$. To provide the necessary design guidance, Batt.jes (1974), Ahrens (1977a), and Stoa (1978) have suggested the use of a roughness and porosity correction factor that allows the use of various smooth-slope design curves for application to other structure slope characteristics. This roughness and porosity correction factor, r, is the ratio of runup or relative runup on rough permeable or other nonsmooth slope to the runup or relative runup on a smooth impermeable slope. This is expressed by the following equation:

Figure 7-8. Wave runup on smooth, impermeable slopes when $\mathrm{d}_{s} / \mathrm{H}_{o}^{\prime}=0$ (structures fronted by a $1: 10$ slope).

Figure 7-9. Wave runup on smooth, impermeable slopes when $d_{s} / \mathrm{H}_{0}^{-} \approx 0.45$ (structures fronted by a $1: 10$ slope).

Figure 7-10. Wave runup on smooth, impermeable slopes when $\mathrm{d}_{\mathcal{S}} / \mathrm{H}_{0}^{\prime} \approx 0.80$ (structures fronted by a $1: 10$ slope).

Figure 7-11. Wave runup on smooth, impermeable slopes when $d_{s} / H_{0}^{-} \approx 2.0$.

Figure 7-12. Wave runup on smooth, impermeable slopes when $\mathrm{d}_{s} / \mathrm{H}_{0}^{\prime} \geq 3.0$.

Figure 7-14. Wave runup on impermeable, vertical wall versus $\mathrm{H}_{\mathrm{O}}^{-} / \mathrm{gT}^{2}$.

Figure 7-15. Wave runup on impermeable, quarrystone, $1: 1.5$ slope versus $\mathrm{H}_{\mathrm{O}} / \mathrm{gT}^{2}$.

Figure 7-16. Wave runup on impermeable, stepped, $1: 1.5$ slope versus $\mathrm{H}^{\prime} / \mathrm{gT}^{2}$.

Figure 7-17. Wave runup on impermeable seawall versus $\mathrm{H}_{0}^{\prime} / \mathrm{gT}^{2}$.

Figure 7-18. Wave runup on recurved (Galveston-type) seawall versus $\mathrm{H}_{0}^{\prime} / \mathrm{gT}^{2}$.

Figure 7-19. Wave runup and rundown on graded riprap, $1: 2$ slope, impermeable base, versus H_{0} / g^{2}
(data for $\mathrm{d}_{\mathrm{S}} / \mathrm{H}_{0}^{\prime}>3.0$)

Figure 7-20. Comparison of wave runup on smooth slopes with runup on permeable rubble slopes (data for $d / H^{\prime}>3.0$).

$$
\begin{equation*}
r=\frac{R(\text { rough slope })}{R(\text { smooth slope })}=\frac{\mathrm{R} / \mathrm{H}_{O}^{\prime}(\text { rough slope })}{\mathrm{R} / \mathrm{H}_{O}^{\prime}(\text { smooth slope })} \tag{7-7}
\end{equation*}
$$

Table 7-2 indicated the range of values of r for various slope characteristics.

This roughness and porosity correction factor is also considered applicable, as a first approximation, in the analysis of wave runup on slopes having surface materials with two or more different roughness values, r. Until more detailed guidance is available, it is suggested that the percentage of the total slope length, ℓ, subjected to wave runup of each roughness value be used to develop an adjusted roughness correction value. This is expressed by the equation

$$
\begin{equation*}
r(\text { adjusted })=\frac{\ell_{1}}{\ell} r_{1}+\frac{\ell_{2}}{\ell} r_{2}+\frac{\ell_{3}}{\ell} r_{3}+\ldots \tag{7-8}
\end{equation*}
$$

where ℓ is the total slope length, ℓ_{1} is the length of slope where the roughness value r_{2} applies, ℓ_{2} is the length of slope where the roughness value r_{2} applies, and so on. This procedure has obvious deficiencies as it does not account for location of the roughness on the structure and the varying interaction of slope roughness characteristics to the depth of water jet running up the structure slope.

Table 7-2. Value of r for various slope characteristics (after Battjes, 1974) .

Slope Surface Characteristics	Placement	r
Smooth, impermeable	------	1.00
Concrete blocks	Fitted	0.90
Basalt blocks	Fitted	0.85 to 0.90
Gobi blocks	Fitted	0.85 to 0.90
Grass	------	0.85 to 0.90
One layer of quarrystone (impermeable foundation)	Random	0.80
Quarrystone	Fitted	0.75 to 0.80
Rounded quarrystone	Random	0.60 to 0.65
Three layers of quarrystone (impermeable foundation)	Random	0.60 to 0.65
Quarrystone	Random	0.50 to 0.55
Concrete armor units (~ 50 percent void ratio)	Random	0.45 to 0.50

The use of the figures to estimate wave runup is illustrated by the following example.

GIVEN: An impermeable structure has a smooth slope of 1 on 2.5 and is subjected to a design wave, $H=2.0 \mathrm{~m}(6.6 \mathrm{ft})$ measured at a gage located in a depth $d=4.5 \mathrm{~m}(14.8 \mathrm{ft})$. Design period is $T=8 \mathrm{sec}$. Design depth at structure toe at high water is $d_{s}=3.0 \mathrm{~m}(9.8 \mathrm{ft}$) . (Assume no change in the refraction coefficient between the structure and the wave gage.)

FIND:
(a) The height above the SWL to which the structure must be built to prevent overtopping by the design wave.
(b) The reduction in required structure height if uniform-sized riprap is placed on the slope.

SOLUTION:
(a) Since the runup curves are for deepwater height H^{-}, the shallow-water wave height $H=2.0 \mathrm{~m}(6.6 \mathrm{ft})$ must be converted to an equivalent deepwater value. Using the depth where the wave height is measured, calculate

$$
\frac{\mathrm{d}}{\mathrm{~L}_{0}}=\frac{2 \pi \mathrm{~d}}{\mathrm{gT}^{2}}=\frac{2 \pi(4.5)}{(9.8)(8)^{2}}=0.0451
$$

From Table C-1, Appendix C, for

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~L}_{\mathrm{O}}}=0.0451 \\
& \frac{\mathrm{H}}{\mathrm{H}_{\mathrm{O}}^{\prime}}=1.041
\end{aligned}
$$

Therefore

$$
\mathrm{H}_{0}^{\prime}=\frac{\mathrm{H}}{1.041}=\frac{2.0}{1.041}=1.9 \mathrm{~m}(6.2 \mathrm{ft})
$$

To determine the runup, calculate

$$
\frac{\mathrm{H}_{o}^{-}}{\mathrm{gT}^{2}}=\frac{1.9}{(9.8)(8)^{2}}=0.0030
$$

and using the depth at the structure toe

$$
\mathrm{d}_{s}=3.0 \mathrm{~m}(9.8 \mathrm{ft})
$$

$$
\frac{\mathrm{d}_{s}}{\mathrm{H}_{0}^{\prime}}=\frac{3.0}{1.9}=1.58
$$

Interpolating between Figures 7-10 and 7-11, for a 1 on 2.5 slope, produces

Figure 7-10:
$\frac{\mathrm{d}_{s}}{\mathrm{H}_{O}^{\prime}}=0.80 ; \frac{\mathrm{R}}{\mathrm{H}_{o}^{\prime}}=2.80$
Interpolated Value: $\frac{\mathrm{d}_{s}}{\mathrm{H}_{o}^{\prime}}=1.58 ; \frac{\mathrm{R}}{\mathrm{H}_{0}^{\prime}} \approx 2.5$
Figure 7-11: $\quad \frac{\mathrm{d}_{S}}{\mathrm{H}_{O}^{\prime}}=2.0 ; \frac{\mathrm{R}}{\mathrm{H}_{O}^{\prime}}=2.35$
The runup, uncorrected for scale effects, is

$$
\begin{aligned}
& R=2.5\left(H_{o}^{\prime}\right) \\
& R=2.5(1.9)=4.8 \mathrm{~m}(15.7 \mathrm{ft})
\end{aligned}
$$

The scale correction factor k can be found from Figure 7-13. The slope in terms of $m=\tan \theta$ is

$$
\tan \theta=\frac{1}{2.5}=0.40
$$

The corresponding correction factor for a wave height $H_{o}^{\prime}=1.9 \mathrm{~m}(6.2 \mathrm{ft})$
is is

$$
k=1.169
$$

Therefore, the corrected runup is

$$
R=1.169(4.8)=5.6 \mathrm{~m}(18.4 \mathrm{ft})
$$

(b) Riprap on a slope decreases the maximum runup. Hydraulic model studies for the range of possible slopes have not been conducted; however, Figure 715 can be used with Figures $7-10$ and $7-11$ to estimate the percent reduction of runup resulting from adding riprap to a 1 on 1.5 slope and to apply that reduction to structures with different slopes. From an analysis similar to the above, the runup, uncorrected for scale effects, on a 1 on 1.5 smooth, impermeable slope is

$$
\left[\frac{\mathrm{R}}{\mathrm{H}_{\mathrm{O}}^{\prime}}\right]_{\text {smooth }}=3.04
$$

From Figure $7-15$ (riprap), entering with $\mathrm{H}^{-} / \mathrm{gT}^{2}=0.0030$ and using the curve for $\mathrm{d}_{s} / \mathrm{H}_{0}^{-}=1.50$ which is closest to the actual value of

$$
\begin{aligned}
& \frac{\mathrm{d}_{s}}{\mathrm{H}_{o}^{\prime}}=1.58 \\
& \left(\frac{\mathrm{R}}{\mathrm{H}_{o}^{\prime}}\right)_{\text {riprap }}=1.43
\end{aligned}
$$

The reduction in runup is therefore,

$$
\frac{\left(\mathrm{R} / \mathrm{H}_{\mathrm{O}}^{\prime}\right)}{\left(\mathrm{R} / \mathrm{H}_{\mathrm{O}}^{\prime}\right)} \text { riprap }=\frac{1.43}{3.04}=0.47
$$

Applying this correction to the runup calculated for the 1 on 2.5 slope in the preceding part of the problem gives

$$
R_{\text {riprap }}=0.47 R_{\text {smooth }}=0.47(5.8)=2.7 \mathrm{~m}(8.9 \mathrm{ft})
$$

Since the scale-corrected runup (5.8 m) was multiplied by the factor 0.47 , the correction for scale effects is included in the $1.7-\mathrm{m}$ runup value. This technique gives a reasonable estimate of runup on riprapped slopes when model test results for the actual structure slope are not available.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Saville (1958a) presented a method for determining runup on composite slopes using experimental results obtained for constant slopes. The method assumes that a composite slope can be replaced with a hypothetical, uniform slope running from the bottom, at the point where the incident wave breaks, up to the point of maximum runup on the structure. Since the point of maximum runup is the answer sought, a method of successive approximations is used. Calculation of runup on a composite slope is illustrated by the following example problem for a smooth-faced levee. The method is equally applicable to any composite slope. The resultant runup for slopes composed of different types of surface roughness may be calculated by using a proportionate part of various surface roughnesses of the composite slope on the hypothetical slope. The composite-slope method should not be used where beach berms are wider than $\mathrm{L} / 4$, where L is the design wavelength for the structure. In the case where a wide berm becomes flooded or the water depth has been increased by wave setup (see Ch. 3, Sec. VIII) such as a reef, the wave runup is based on the water depth on the berm or reef.
$\star * * * * * * * * * * * * * * * \operatorname{EXAMPLE}$ PROBLEM $5 * * * * * * * * * * * * * *$
GIVEN: A smooth-faced levee (cross section shown in Fig. 7-21) is subjected to a design wave having a period $T=8 \mathrm{~s}$ and an equivalent deepwater height $H_{0}^{\prime}=1.5 \mathrm{~m}(4.9 \mathrm{ft})$. The depth at the structure toe is $\mathrm{d}_{s}=1.2 \mathrm{~m}, ~$

FIND: Using the composite slope method, determine the maximum runup on the levee face by the design wave.

Figure 7-21. Calculation of runup for composite slope: example of a levee cross section.

SOLUTION: The runup on a 1 on 3 slope ($\tan \theta=0.33$) is first calculated to determine whether the runup will exceed the berm elevation. Calculate

$$
\frac{\mathrm{d}_{s}}{\mathrm{H}_{O}^{\prime}}=\frac{1.2}{1.5}=0.8
$$

and

$$
\frac{\mathrm{H}^{\prime}{ }_{o}}{\mathrm{gT}^{2}}=\frac{1.5}{(9.8)(8)^{2}}=0.0024
$$

From Figure 7-10 for

$$
\frac{\mathrm{d}_{s}}{\mathrm{H}_{o}^{\prime}}=0.8
$$

with

$$
\cot (\theta)=1 / \tan (\theta)=3.0
$$

and

$$
\begin{aligned}
& \frac{\mathrm{H}_{O}^{\prime}}{\mathrm{gT}^{2}}=0.0024 \\
& \frac{\mathrm{R}}{\mathrm{H}_{O}^{\prime}}=2.8
\end{aligned}
$$

This runup is corrected for scale effects by using Figure 7-13 with tan $\theta=$ 0.33 and $H \approx 1.5 \mathrm{~m}(4.9 \mathrm{ft})$. A correction factor $k=1.15$ is obtained, and

$$
\begin{aligned}
& \mathrm{R}=2.8 \mathrm{k} \mathrm{H}_{0}^{-}=2.8(1.15)(1.5) \\
& \mathrm{R}=4.8 \mathrm{~m}(15.7 \mathrm{ft})
\end{aligned}
$$

which is 3.0 m (9.8 ft) above the berm elevation (see Fig. 7-21). Therefore, the composite-slope method must be used.

The breaker depth for the given design wave is first determined with

$$
\frac{\mathrm{H}_{O}^{\prime}}{\mathrm{gT}^{2}}=0.0024
$$

calculate

$$
\frac{\mathrm{H}_{O}^{\prime}}{\mathrm{L}_{O}}=\frac{2 \pi(1.5)}{(9.8)(8)^{2}}=0.015
$$

Enter Figure $7-3$ with $\mathrm{H}^{-} / \mathrm{gT}^{2}=0.0024$, using the curve for the given slope $m=0.050(1: 20)$, and find

$$
\frac{\mathrm{H}_{\hat{b}}}{\mathrm{H}_{o}^{\prime}}=1.46
$$

Therefore

$$
H_{b}=1.46(1.5)=2.2 \mathrm{~m}(7.2 \mathrm{ft})
$$

calculate

$$
\frac{\mathrm{H}_{b}}{\mathrm{gT}^{2}}=\frac{2.2}{(9.8)(8)^{2}}=0.0035
$$

Then from Figure 7-2, from the curve for $m=0.05$

$$
\frac{d_{b}}{H_{b}}=0.95
$$

and

$$
\mathrm{d}_{b}=0.95 \mathrm{H}_{b}=0.95(2.2)=2.1 \mathrm{~m}(6.9 \mathrm{ft})
$$

Therefore, the wave will break a distance (2.1-1.2)/0.05 $=18.0 \mathrm{~m}(59.0 \mathrm{ft})$ in front of the structure toe.

The runup value calculated above is a first approximation of the actual runup and is used to calculate a hypothetical slope that is used to determine the second approximation of the runup. The hypothetical slope is taken from the point of maximum runup on the structure to the bottom at the breaker location (the upper dotted line on Figure 7-22). Then

$$
\Delta x=18.0+9.0+6.0+9.0=42.0 \mathrm{~m}(137.8 \mathrm{ft})
$$

and, the change in elevation is

$$
\Delta y=2.1+4.8=6.9 \mathrm{~m}(22.6 \mathrm{ft})
$$

therefore

$$
\cot \theta=\frac{\Delta x}{\Delta y}=\frac{(42.0)}{(6.9)}=6.1
$$

This slope may now be used with the runup curves (Figs. 7-10 and 7-11) to determine a second approximation of the actual runup. Calculate d_{s} / H_{O}^{\prime} using the breaker depth d_{b}

$$
\frac{d_{b}}{H_{0}^{\prime}}=\frac{2.1}{1.5}=1.40
$$

Interpolating between Figures 7-10 and 7-11, for

$$
\frac{\mathrm{H}_{0}^{\prime}}{\mathrm{gT}^{2}}=0.0024
$$

gives

$$
\frac{\mathrm{R}}{\mathrm{H}_{\mathrm{o}}}=1.53
$$

Correcting for scale effects using Figure 7-13 yields

$$
k=1.07
$$

and

$$
R=1.53(1.07) 1.5 \approx 2.5 \mathrm{~m}(8.2 \mathrm{ft})
$$

A new hypothetical slope as shown in Figure 7-22 can now be calculated using the second runup approximation to determine Δx and Δy. A third approximation for the runup can then be obtained. This procedure is continued until the difference between two successive approximations for the example problem is acceptable,

$$
\begin{aligned}
& R_{1}=4.8 \mathrm{~m}(15.7 \mathrm{ft}) \\
& \mathrm{R}_{2}=2.5 \mathrm{~m}(8.2 \mathrm{ft}) \\
& \mathrm{R}_{3}=1.8 \mathrm{~m}(5.9 \mathrm{ft}) \\
& \mathrm{R}_{4}=1.6 \mathrm{~m}(5.2 \mathrm{ft}) \\
& \mathrm{R}_{5}=1.8 \mathrm{~m}(5.9 \mathrm{ft})
\end{aligned}
$$

and the steps in the calculations are shown graphically in Figure 7-22. The number of computational steps could have been decreased if a better first guess of the hypothetical slope had been made.
b. Irregular Waves. Limited information is presently available on the results of model testing that can be used for predicting the runup of irregular wind-generated waves on various structure slopes. Ahrens (1977a) suggests the following interim approach until more definitive laboratory test results are available. The approach assumes that the runup of individual waves has a Rayleigh distribution of the type associated with wave heights (see Ch. 3, Sec. II,2, Wave Height Variability). Saville (1962), van Oorschot and d'Angremond (1968), and Battjes (1971; 1974) suggested that wave runup has a Rayleigh distribution and that it is a plausible and probably conservative assumption for runup caused by wind-generated wave conditions. Wave height distribution is expressed by equation (3-7):

$$
\frac{\hat{\mathrm{H}}}{\mathrm{H}_{r m s}}=\left[-\mathrm{Ln}\left(\frac{\mathrm{n}}{\mathrm{~N}}\right)\right]^{1 / 2}
$$

where, from equation (3-9), $H_{r m s}=H_{s} / \sqrt{2}, \hat{H}=$ an arbitrary wave height for probability distribution, and $n / \mathrm{N}=\mathrm{P}$ (cumulative probability). Thus, if equation (3-7) is rewritten, the wave height and wave runup distribution is given by

$$
\begin{equation*}
\frac{\hat{\mathrm{H}}}{\mathrm{H}_{s}}=\frac{\mathrm{R}_{P}}{\mathrm{R}_{s}}=\left(-\frac{\mathrm{LnP}}{2}\right)^{1 / 2} \tag{7-9}
\end{equation*}
$$

Figure 7-22. Successive approximations to runup on a composite slope: example problem.
where R_{p} is the wave runup associated with a particular probability of exceedance, P, and R_{S} is the wave runup of the significant wave height, H_{s}. Figure 7-23 is a plot of equation (7-9). For illustration, if the 1 percent wave runup (i.e., the runup height exceeded by 1 percent of the runups) is used, then $P=0.01$ and equation (7-9) yields

$$
\frac{\hat{\mathrm{H}}(1 \%)}{\mathrm{H}_{s}}=\frac{\mathrm{R}_{0.01}}{\mathrm{R}_{s}}=\left(-\frac{\operatorname{Ln} 0.01}{2}\right)^{1 / 2}=1.517
$$

This example indicates that the 1 percent wave runup would be about 52 percent greater than R_{s}, the runup of the significant wave, $H_{S} \cdot \hat{H}(1 \%)$ should not be confused with the term H_{1} which is the average of the highest 1 percent of all waves for a given time period. For the condition of a sloping offshore bottom fronting the structure, a check should be made to determine if a wave height greater than H_{S} breaks on the offshore bottom slope rather than on the structure slope for which the runup, R_{S}, was determined. Should the larger wave break on the offshore bottom slope, the runup would be expected to be less than that indicated by the ratio R_{p} / R_{S}.

The following problem illustrates the use of the irregular wave runup on a rough slope using smooth-slope curves.

```
* * * * * * * * * * * * * * EXAMPLE PROBLEM 6 * * * * * * * * * * * * * * * *
```

GIVEN: An impermeable structure with a smooth slope of 1 on 2.5 is subjected to a design significant wave $H_{S}=2.0 \mathrm{~m}(6.6 \mathrm{ft})$ and $T=8 \mathrm{~s}$ measured in a water depth $(\mathrm{d}=4.5 \mathrm{~m}(14.8 \mathrm{ft})$. The design depth at the toe of the structure $d_{s}=3.0 \mathrm{~m}(9.8 \mathrm{ft})$ at SWL.

FIND:
(a) The wave runup on the structure from the significant wave H_{s} and the $\mathrm{H}_{0.1}$ and $\mathrm{H}_{0.01}$ waves.
(b) The probability of exceedance of the wave height that will begin to overtop the structure with a crest at $7.5 \mathrm{~m}(24.6 \mathrm{ft})$ above SWL.

SOLUTION:

(a) From the example program given in Section $I I, 1$,a, Regular Waves, it is found that $R=R_{S}=5.6 \mathrm{~m}(18.4 \mathrm{ft})$. From equation (7-9) or Figure 7-23

$$
\frac{\mathrm{H}_{0.1}}{\mathrm{H}_{s}}=\frac{\mathrm{R}_{0.1}}{\mathrm{R}_{s}}=\left(-\frac{\operatorname{Ln} 0.1}{2}\right)^{1 / 2}=1.07
$$

and

$$
\mathrm{R}_{0.1}=1.07 \mathrm{R}_{s}=1.07(5.6)=6.0 \mathrm{~m}(19.7 \mathrm{ft})
$$

Also

Figure 7-23. Probability of exceedance for relative wave heights or runup values.

$$
\frac{\mathrm{H}_{0.01}}{\mathrm{H}_{s}}=\frac{\mathrm{R}_{0.01}}{\mathrm{R}_{s}}=\left(-\frac{\operatorname{Ln} 0.01}{2}\right)^{1 / 2}=1.52
$$

and

$$
\mathrm{R}_{0.01}=1.52 \mathrm{R}_{s}=1.52(5.6)=8.5 \mathrm{~m}(27.9 \mathrm{ft})
$$

(b) With $\mathrm{R}_{s}=5.6 \mathrm{~m}$ and $\mathrm{R}_{p}=7.5 \mathrm{~m}$ and if Figure 7-23 is used for

$$
\frac{R_{p}}{R_{s}}=\frac{7.5}{5.6}=1.34
$$

then $p=0.028$ or 3 percent of the runup exceeds the crest of the structure.

2. Wave Overtopping.
a. Regular (Monochromatic) Waves. It may be too costly to design structures to preclude overtopping by the largest waves of a wave spectrum. If the structure is a levee or dike, the required capacity of pumping facilities to dewater a shoreward area will depend on the rate of wave overtopping and water contributed by local rains and stream inflow. Incident. wave height and period are important factors, as are wind speed and direction with respect to the structure axis. The volume rate of wave overtopping depends on structure height, water depth at the structure toe, structure slope, and whether the slope face is smooth, stepped, or riprapped. Saville and Caldwell (1953) and Saville (1955) investigated overtopping rates and runup heights on small-scale laboratory models of structures. Larger scale model tests have also been conducted for lake Okeechobee levee section (Saville, 1958b). A reanalysis of Saville's data indicates that the overtopping rate per unit length of structure can be expressed by

$$
\begin{equation*}
\left.\mathrm{Q}=\left(\mathrm{g} \mathrm{Q}_{0}^{*} \mathrm{H}_{0}^{-3}\right) 1 / 2 \mathrm{e}^{-\left[\frac{0.217}{\alpha} \tanh ^{-1}\left(\frac{\mathrm{~h}-\mathrm{d}}{\mathrm{~S}}\right)\right.}\right] \tag{7-10}
\end{equation*}
$$

in which

$$
0 \leq \frac{\mathrm{h}-\mathrm{d}_{\mathrm{s}}}{\mathrm{R}}<1.0
$$

or equivalently by

$$
\begin{equation*}
\mathrm{Q}=\left(\mathrm{g} \mathrm{Q}_{0}^{*} \mathrm{H}_{0}^{-3}\right)^{1 / 2} \mathrm{e}^{-\left[\frac{0.1085}{\alpha} \log _{\mathrm{e}}\left(\frac{\mathrm{R}+\mathrm{h}-\mathrm{d}_{s}}{\mathrm{R}-\mathrm{h}+\mathrm{d}_{s}}\right)\right]} \tag{7-11}
\end{equation*}
$$

in which

$$
0 \leq \frac{\mathrm{h}-\mathrm{d}_{\delta}}{\mathrm{R}}<1.0
$$

where Q is the overtopping rate (volume/unit time) per unit structure length, g is the gravitational acceleration, H_{o}^{\prime} is the equivalent deepwater wave height, h is the height of the structure crest above the bottom, d_{s} is the depth at the structure toe, R is the runup on the structure that would occur if the structure were high enough to prevent overtopping corrected for scale effects (see Sec. II, WAVE RUNUP), and α and $Q_{O}^{*} \quad$ are empirically determined coefficients that depend on incident wave characteristics and structure geometry. Approximate values of α and Q_{0}^{*} as functions of wave steepness $H_{o}^{\prime} / \mathrm{gT}^{2}$ and relative height $\mathrm{d}_{s} / \mathrm{H}_{0}^{\prime}$ for various slopes and structure types are given in Figures 7-24 through 7-32. The numbers beside the indicated points are values of α and Q_{0}^{*} (Q_{0}^{*} in parentheses on the figures) that, when used with equation (7-10) or (7-11), predict measured overtopping rates. Equations (7-10) and (7-11) are valid only for $0 \leq\left(h-d_{S}\right)<R$. When $\left(h-d_{g}\right) \geq R$ the overtopping rate is taken as zero. Weggel (1976) suggests a procedure for obtaining approximate values of α and Q_{O}^{*} where more exact values are not available. His procedure uses theoretical results for wave overtopping on smooth slopes and gives conservative results; i.e., values of overtopping greater than the overtopping which would be expected to actually occur.

It is known that onshore winds increase the overtopping rate at a barrier. The increase depends on wind velocity and direction with respect to the axis of the structure and structure slope and height. As a guide, calculated overtopping rates may be multiplied by a wind correction factor given by

$$
\begin{equation*}
\mathrm{k}^{\prime}=1.0+\mathrm{W}_{f}\left(\frac{\mathrm{~h}-\mathrm{d} s}{\mathrm{R}}+0.1\right) \sin \theta \tag{7-12}
\end{equation*}
$$

where W_{f} is a coefficient depending on windspeed, and θ is the structure slope ($\theta=90^{\circ}$ for Galveston walls) . For onshore windspeeds of $60 \mathrm{mi} / \mathrm{hr}$ or greater, $\mathrm{W}_{f}=2.0$ should be used. For a windspeed of $30 \mathrm{mi} / \mathrm{hr}, \mathrm{W}_{f}=0.5$; when no onshore winds exist, $\mathrm{W}_{f}=0$. Interpolation between values of W_{f} given for 60,30 , and $0 \mathrm{mi} / \mathrm{hr}$ will give values of W_{f} for intermediate wind speeds. Equation (7-12) is unverified, but is believed to give a reasonable estimate of the effects of onshore winds of significant magnitude. For a windspeed of $30 \mathrm{mi} / \mathrm{hr}$, the correction factor k^{\prime} varies between 1.0 and 1.55 , depending on the values of $\left(h-d_{s}\right) / R$ and $\sin \theta$.

Values of α and Q_{O}^{*} larger than those in Figures 7-24 through 7-32 should be used if a more conservative (higher) estimate of overtopping rates is required.

Further analysis by Weggel (1975) of data for smooth slopes has shown that for a given slope, the variability of α with incident conditions was relatively small, suggesting that an average α could be used to establish the Q_{O}^{*} value that best fit the data. Figure $7-33$ shows values of the average $\alpha(\bar{\alpha})$ for four smooth, structure slopes with data obtained at three different scales. An expression for relating α with structure slope (smooth

Figure 7-24. Overtopping parameters α and Q_{o}^{*} (smooth vertical wall on a 1:10 nearshore slope).

Figure 7-25. Overtopping parameters α and Q^{*} (smooth $1: 1.5$ structure slope on a $1: 10$ nearshore slope). 0

Figure 7-26. Overtopping parameters α and Q_{o}^{*} (smooth $1: 3$ structure slope on a $1: 10$ nearshore slope).

Figure 7-27. Overtopping parameters α and Q_{0}^{*} (smooth $1: 6$ structure slope on a $1: 10$ nearshore slope).

Figure 7-28. Overtopping parameters α and Q_{O}^{*} (riprapped $1: 1.5$ structure slope on a 1:10 nearshore slope).

Figure 7-29. Overtopping parameters α and Q_{0}^{*} (stepped $1: 1.5$ structure slope on a 1:10 nearshore slope).

$\begin{array}{ll}\text { Figure 7-30. } \begin{array}{l}\text { Overtopping parameters } \\ \text { nearshore slope). }\end{array} & \text { and } Q_{0}^{*} \text { (curved wall on a } 1: 10\end{array}$

$\begin{array}{ll}\text { Figure 7-31. } \begin{array}{l}\text { Overtopping parameters } \\ \text { nearshore slope). }\end{array} & \text { and } Q_{0}^{*} \text { (curved wall on a } 1: 25\end{array}$

Figure 7-32. Overtopping parameters α and Q_{0}^{*} (recurved wall on a $1: 10$ nearshore slope).

where θ is the structure slope angle from the horizontal.
The variation of Q_{0}^{*} between waves conforming to linear theory and to cnoidal theory was also investigated by Weggel (1976). The findings of this investigation are illustrated in Figure 7-34. Q_{0}^{*} is shown as a function of depth at the structure d_{s}, estimated deepwater wave height H_{o}^{\prime}, and period T, for both linear and cnoidal theory.

Calculation of wave overtopping rates is illustrated by the following example. * * * * * * * * * * * * * * * * EXAMPLE PROBLEM 7 * * * * * * * * * * * * * *

GIVEN: An impermeable structure with a smooth slope of 1 on 2.5 is subjected to waves having a deepwater height $\mathrm{H}_{0}^{\prime}=1.5 \mathrm{~m}(4.9 \mathrm{ft})$ and a period $\mathrm{T}=8$ \mathbf{s}. The depth at the structure toe is $d=3.0 \mathrm{~m}(9.8 \mathrm{ft})$; crest elevation is $1.5 \mathrm{~m}(4.8 \mathrm{ft})$ above SWL . Onshore winds of 35 knots are assumed.

FIND: Estimate the overtopping rate for the given wave.

Figure 7-34. Variation of Q_{O}^{*} between waves conforming to cnoidal theory and waves conforming to linear theory.

SOLUTION: Determine the runup for the given wave and structure. Calculate

$$
\begin{aligned}
& \frac{\mathrm{d}_{s}}{\mathrm{H}_{o}^{\prime}}=\frac{3.0}{1.5}=2.0 \\
& \frac{\mathrm{H}_{0}^{\prime}}{\mathrm{gT}^{2}}=\frac{1.5}{(9.8)(8)^{2}}=0.0024
\end{aligned}
$$

From Figure 7-11, since

$$
\begin{aligned}
& \frac{\mathrm{d}_{s}}{\mathrm{H}_{O}^{\prime}}=2.0 \\
& \frac{\mathrm{R}}{\mathrm{H}_{O}^{\prime}}=2.9 \text { (uncorrected for scale effect) }
\end{aligned}
$$

Since $H^{\prime}=1.5 \mathrm{~m}(4.8 \mathrm{ft})$, from Figure $7-13$ the runup correction factor k^{\prime} is approximately 1.17. Therefore

$$
\frac{\mathrm{R}}{\mathrm{H}_{0}^{\prime}}=1.7(2.9)=3.4
$$

and

$$
R=3.4\left(H_{o}^{\prime}\right)=(3.4)(1.5)=5.1 \mathrm{~m}(16.7 \mathrm{ft})
$$

The values of α and Q^{*} for use in equation (7-10) can be found by interpolation between Figures $7-25$ and $7-26$. From Figure 7-26, for sma11scale data on a $1: 3$ slope

$$
\left.\begin{array}{l}
\alpha=0.09 \\
Q_{0}^{*}=0.033
\end{array}\right\} \text { at } \frac{\mathrm{d}_{s}}{\mathrm{H}_{\mathrm{o}}^{\prime}}=2.0 \quad \text { and } \frac{\mathrm{H}_{\mathrm{o}}^{-}}{\mathrm{gT}^{2}}=0.0024
$$

Also from Figure 7-26, for larger scale data

$$
\left.\begin{array}{l}
\alpha=0.065 \\
Q_{o}^{*}=0.040
\end{array}\right\} \text { at } \frac{\mathrm{d}_{s}}{\mathrm{H}_{o}^{\prime}}=2.33 \text { and } \frac{\mathrm{H}_{o}^{\prime}}{\mathrm{gT}^{2}}=0.0028
$$

Note that these values were selected for a point close to the actual values for the problem, since no large-scale data are available exactly at

$$
\begin{aligned}
& \frac{\mathrm{d}_{s}}{\mathrm{H}_{0}^{\prime}}=2.0 \\
& \frac{\mathrm{H}_{o}^{\prime}}{\mathrm{gT}^{2}}=0.0024
\end{aligned}
$$

From Figure 7-25 for small-scale data on a 1 on 1.5 slope

$$
\left.\begin{array}{l}
\alpha=0.067 \\
Q_{0}^{*}=0.0135
\end{array}\right\} \text { at } \frac{\mathrm{d}_{s}}{\mathrm{H}_{O}^{\prime}}=1.5 \text { and } \frac{\mathrm{H}_{O}^{\prime}}{\mathrm{gT}^{2}}=0.0016
$$

Large-scale data are not available for a 1 on 1.5 slope. Since larger values of α and Q^{*} give larger estimates of overtopping, interpolation by eye between the Gata for a 1 on 3 slope and a 1 on 1.5 slope gives approximately

$$
\begin{aligned}
\alpha & =0.08 \\
Q_{0}^{*} & =0.035
\end{aligned}
$$

From equation (7-10)

$$
\mathrm{Q}=\left(\mathrm{g} \mathrm{Q}_{0}^{*} \mathrm{H}_{0}^{-3}\right)^{1 / 2} \mathrm{e}-\left[\frac{0.217}{\alpha} \tanh ^{-1}\left(\frac{\mathrm{~h}-\mathrm{d}_{s}}{\mathrm{R}}\right)\right]
$$

$$
\left.\mathrm{Q}=\left[\begin{array}{lll}
(9.8) & (0.035) & (1.5)^{3}
\end{array}\right] 1 / 2 \mathrm{e}^{-\left[\frac{0.217}{0.08} \tanh ^{-1}\left(\frac{\mathrm{~h}-\mathrm{d}_{\delta}}{\mathrm{R}}\right)\right.}\right]
$$

The value of $\frac{\mathrm{h}-\mathrm{d}_{s}}{\mathrm{R}}$ is $\frac{4.5-3.0}{5.1}=0.294$.
To evaluate $\tanh ^{-1}\left[\left(\mathrm{~h}-\mathrm{d}_{s}\right) / \mathrm{R}\right]$ find 0.294 in column 4 of either Table $\mathrm{C}-1$ or $\mathrm{C}-2$, Appendix C , and read the value of $\tanh ^{-1}\left[\left(\mathrm{~h}-\mathrm{d}_{s}\right) / \mathrm{R}\right]$ from column 3 . Therefore

$$
\tanh ^{-1}(0.294) \approx 0.31
$$

The exponent is calculated thus:

$$
\frac{0.217(0.31)}{(0.08)}=0.84
$$

therefore

$$
Q=1.08 e^{-0.84}=1.08(0.43)=0.47 \mathrm{~m}^{3} / \mathrm{s}-\mathrm{m}
$$

or

$$
5.0 \mathrm{ft}^{3} / \mathrm{s}-\mathrm{ft}
$$

For an onshore wind velocity of $35 \mathrm{mi} / \mathrm{hr}$, the value of W_{f} is found by interpolation

$$
\begin{array}{ll}
30 \mathrm{mi} / \mathrm{hr} & \mathrm{~W}_{f}=0.5 \\
35 \mathrm{mi} / \mathrm{hr} & \mathrm{~W}_{f}=0.75 \\
60 \mathrm{mi} / \mathrm{hr} & \mathrm{~W}_{f}=2.0
\end{array}
$$

From equation (7-12)

$$
\mathrm{k}^{\prime}=1+\mathrm{W}_{f}\left(\frac{\mathrm{~h}-\mathrm{d}_{s}}{\mathrm{R}}+0.1\right) \sin \theta
$$

where

$$
\begin{aligned}
& \mathrm{W}_{f} \quad=0.75 \\
& \frac{\mathrm{~h}-\mathrm{d}_{s}}{\mathrm{R}}=0.3 \\
& \theta=\tan ^{-1}(1 / 2.5) \approx 22^{\circ} \\
& \sin 22^{\circ}=0.37
\end{aligned}
$$

Therefore

$$
k^{\prime}=1+0.75(0.3+0.1) 0.37=1.11
$$

and the corrected overtopping rate is

$$
\begin{aligned}
& \mathrm{Q}_{c}=\mathrm{k}^{-} \mathrm{Q} \\
& \mathrm{Q}_{c}=1.11(0.47)=0.5 \mathrm{~m}^{3} / \mathrm{s}-\mathrm{m}\left(5.4 \mathrm{ft}^{3} / \mathrm{s}-\mathrm{ft}\right)
\end{aligned}
$$

The total volume of water overtopping the structure is obtained by multiplying Q_{c} by the length of the structure and by the duration of the given wave conditions.

*

b. Irregular Waves. As in the case of runup of irregular waves (see Sec. II, l, b, Irregular Waves), little information is available to accurately predict the average and extreme rate of overtopping caused by wind-generated waves acting on coastal structures. Ahrens (1977b) suggests the following interim approach until more definitive laboratory tests results are available. The approach extends the procedures described in Section II, 2 , a on wave overtopping by regular (monochromatic) waves by applying the method suggested by Ahrens (1977a) for determining runup of irregular waves. In applying his procedure, note a word of caution: some larger waves in the spectrum may be depth-limited and may break seaward of the structure, in which case, the rate of overtopping may be overestimated.

Irregular wave runup on coastal structures as discussed in Section II, $1, b$ is assumed to have a Rayleigh distribution, and the effect of this assumption is applied to the regular (monochromatic) wave overtopping equation. This equation is expressed as follows:

$$
\begin{equation*}
\mathrm{Q}=\left(\mathrm{g} \mathrm{Q}_{0}^{*} \mathrm{H}_{0}^{3}\right)^{1 / 2} \mathrm{e}^{-\left[\frac{0.217}{\alpha} \tanh ^{-1}\left(\frac{\mathrm{~h}-\mathrm{d}_{s}}{\mathrm{R}}\right)\right]} \tag{7-10}
\end{equation*}
$$

where

$$
0 \leq \frac{\mathrm{h}-\mathrm{d}}{\mathrm{R}_{s}}<1.0
$$

In applying this equation to irregular waves and the resulting runup and overtopping, certain modifications are made and the following equation results:

$$
\mathrm{Q}_{p}=\left[\mathrm{g} \mathrm{Q}_{0}^{*}\left(\mathrm{H}_{0}^{-}\right)_{s}^{3}\right] 1 / 2 \mathrm{e}^{-\left[\frac{0.217}{\alpha} \tanh ^{-1}\left(\frac{\mathrm{~h}-\mathrm{d}_{s}}{\mathrm{R}_{s}}\right) \frac{\mathrm{R}_{s}}{\mathrm{R}_{p}}\right]}
$$

in which

$$
\begin{equation*}
0 \leq\left(\frac{\mathrm{h}^{-\mathrm{d}_{s}}}{\mathrm{R}_{s}}\right) \frac{\mathrm{R}_{s}}{\mathrm{R}_{p}}<1.0 \tag{7-14}
\end{equation*}
$$

where Q_{p} is the overtopping rate associated with R_{p}, the wave runup with a
particular probability of exceedance, P , and R_{s} is the wave runup of the equivalent deepwater significant wave height, $\left(\mathrm{H}_{0}^{\circ}\right)_{s}$. The term $\mathrm{h}-\mathrm{d}_{s} / \mathrm{R}_{s}$ will be referred to as the relative freeboard. The relationship between $\mathrm{R}_{p}, \mathrm{R}_{\boldsymbol{s}}$, and P is given by

$$
\begin{equation*}
\frac{\mathrm{R}_{p}}{\mathrm{R}_{s}}=\left(-\frac{\mathrm{LnP}}{2}\right)^{1 / 2} \tag{7-9}
\end{equation*}
$$

Equation (7-14) provides the rate of overtopping for a particular wave height.
In analyzing the rate of overtopping of a structure subjected to irregular waves and the capacity for handling the overtopping water, it is generally more important to determine the extreme (low probability) rate (e.g., $\mathrm{Q}_{0.005}$) and the average rate \bar{Q} of overtopping based on a specified design storm wave condition. The extreme rate, assumed to have a probability P of 0.5 percent or 0.005 , can be determined by using equation (7-14). The upper group of curves in Figure 7-35 illustrates the relation between the relative freeboard, $\left(\mathrm{h}-\mathrm{d}_{s}\right) / \mathrm{R}_{\boldsymbol{s}}$, and the relative rate of overtopping, $\mathrm{Q}_{0.005} / \mathrm{Q}$, in terms of the empirically determined coefficient, α, where Q_{-}is the overtopping rate for the significant wave height. The average rate \bar{Q} is determined by first calculating the overtopping rate for all waves in the distribution using equation (7-14). For example, in Figure 7-35, this has been calculated for 199 values of probabilities of exceedance at intervals of $P=0.005$ (i.e., $P=0.005,0.010,0.015, \ldots, 0.995)$. Noting that R_{p} / R_{s} is a function of P , solutions will only exist for the previously stated condition that

$$
0 \leq\left(\frac{\mathrm{h}-\mathrm{d} \boldsymbol{s}}{\mathrm{R}_{\boldsymbol{s}}}\right) \frac{\mathrm{R}_{\boldsymbol{s}}}{\mathrm{R}_{p}}<1.0
$$

and $Q p=0$ for other values of P. The average of these overtopping rates is then determined by dividing the summation of the rates by 199 (i.e., the total number of overtopping rates) to obtain \bar{Q}. The lower group of curves in Figure 7-35 illustrates the relation between the relative freeboard and the relative average rate of overtopping \bar{Q} / Q in terms of the empirically determined coefficient α.

* * * * * * * * * * * * * * * * EXAMPLE PROBLEM 8 * * * * * * * * * * * * * *

GIVEN: An impermeable structure with a smooth slope of 1 on 2.5 is subjected to waves having a deepwater significant wave height $H_{o}^{\prime}=1.5 \mathrm{~m}(4.9 \mathrm{ft})$ and a period $T=8 \mathrm{~s}$. The depth at the structure toe is $\mathrm{d}_{\boldsymbol{s}}=3.0 \mathrm{~m}(9.8$ $\mathrm{ft})$; crest elevation is $1.5 \mathrm{~m}(4.9 \mathrm{ft})$ above SWL ($\mathrm{h}-\mathrm{d} \mathrm{s}=1.5 \mathrm{~m}$ (4.9 ft)) . Onshore winds of 35 knots are assumed.

FIND:
(a) Estimate the overtopping rate for the given significant wave.
(b) Estimate the extreme overtopping rate $Q_{0.005}$.
(c) Estimate the average overtopping rate $\overline{\mathrm{Q}}$.

Figure 7-35. $\frac{Q_{0.005}}{Q}$ and $\frac{\bar{Q}}{Q}$ as functions of relative freeboard and α.
(a) The previous example problem in Section II, 2, a gives a solution for the overtopping rate of a $1.5-\mathrm{m}$ (4.9-ft) significant wave corrected for the given wind effects as

$$
\mathrm{Q}=0.5 \mathrm{~m}^{3} / \mathrm{s}-\mathrm{m}
$$

(b) For the value of $\alpha=0.08$ given in the previous example problem, the value of $Q_{0.005}$ is determined as follows:

$$
\begin{aligned}
& \mathrm{R}_{\mathcal{S}}=5.1 \mathrm{~m}(16.7 \mathrm{ft}) \text { from previous example problem } \\
& \frac{\mathrm{h}-\mathrm{d}_{S}}{\mathrm{R}_{\mathcal{S}}}=\frac{1.5}{5.1}=0.294
\end{aligned}
$$

From the upper curves in Figure 7-35, using $\alpha=0.08$ and $\left(h-d_{s}\right) / R_{s}=0.294$

$$
\begin{aligned}
& \frac{Q_{0.005}}{Q}=1.38 \\
& Q_{0.005}=1.38(0.5)=0.7 \mathrm{~m}^{3} / \mathrm{s}-\mathrm{m}\left(7.4 \mathrm{ft}^{3} / \mathrm{s}-\mathrm{ft}\right)
\end{aligned}
$$

(c) From the lower set of curves in Figure 7-35, using $\alpha=0.08$ and $\left(\mathrm{h}-\mathrm{d}_{S}\right) / \mathrm{R}_{\boldsymbol{S}}=0.294$,

$$
\begin{aligned}
& \bar{Q}=0.515 \\
& \frac{\bar{Q}}{}=0.5(0.5)=0.3 \mathrm{~m}^{3} / \mathrm{s}-\mathrm{m}\left(3.2 \mathrm{ft}^{3} / \mathrm{s}-\mathrm{ft}\right) \\
& Q=0.515(0.50
\end{aligned}
$$

The total volume of water overtopping the structure is obtained by multiplying \bar{Q} by the length of the structure and by the duration of the given wave conditons.
3. Wave Transmission.
a. General. When waves strike a breakwater, wave energy will be either reflected from, dissipated on, or transmitted through or over the structure. The way incident wave energy is partitioned between reflection, dissipation, and transmission depends on incident wave characteristics (period, height, and water depth), breakwater type (rubble or smooth-faced, permeable or impermeable), and the geometry of the structure (slope, crest elevation relative to SWL, and crest width). Ideally, harbor breakwaters should reflect or dissipate any wave energy approaching the harbor (see Ch. 2, Sec. V, Wave

Reflection). Transmission of wave energy over or through a breakwater should be minimized to prevent damaging waves and resonance within a harbor.

Most information about wave transmission, reflection, and energy dissipation for breakwaters is obtained from physical model studies because these investigations are easy and relatively inexpensive to perform. Only recently, however, have tests been conducted with random waves (for example, Seelig, 1980a) rather than monochromatic waves, which are typical of natural conditions. One of the purposes of this section is to compare monochromatic and irregular wave transmission. Figure $7-36$ summarizes some of the many types of structures and the range of relative depths, $\mathrm{d}_{\boldsymbol{\delta}} / \mathrm{gT}^{2}$, for which model tests have been performed.

Some characteristics and considerations to keep in mind when designing breakwaters are shown in Table 7-3.
b. Submerged Breakwaters. Submerged breakwaters may have certain attributes as outlined in Table 7-3. However, the major drawback of a submerged breakwater is that a significant amount of wave transmission occurs with the transmission coefficient

$$
\begin{equation*}
K_{T}=\frac{H_{t}}{H_{i}} \tag{7-15}
\end{equation*}
$$

greater than 0.4 for most cases, where H_{i} and H_{t} are the incident and transmitted wave heights.

One of the advantages of submerged breakwaters is that for a given breakwater freeboard

$$
\begin{equation*}
\mathrm{F}=\mathrm{h}-\mathrm{d}_{s} \tag{7-16}
\end{equation*}
$$

water depth, and wave period, the size of the transmission coefficient decreases as the incident wave increases. This indicates that the breakwater is more effective interfering with larger waves, so a submerged breakwater can be used to trigger breaking of high waves. Figure 7-37 shows selected transmission coefficients and transmitted wave heights for a smooth impermeable submerged breakwater with a water depth-to-structure height ratio $\mathrm{d}_{\mathrm{s}} / \mathrm{h}=1.07$.

Figure 7-38 gives design curves for vertical thin and wide breakwaters (after Goda, 1969).
c. Wave Transmission by Overtopping. A subaerial (crest elevation above water level with positive F) will experience transmission by overtopping any time the runup is larger than freeboard ($F / R<1.0$) (Cross and Sollitt, 1971), where R is the runup that would occur if the structure were high enough so that no overtopping occurred. Seelig (1980a) modified the approach of Cross and Sollitt (1971) to show that the transmission by overtopping coefficient can be estimated from

$$
\begin{equation*}
\mathrm{K}_{\mathrm{TO} 0}=\mathrm{C}(1.0-\mathrm{F} / \mathrm{R}) \tag{7-17}
\end{equation*}
$$

Figure 7-36. Wave transmission over submerged and overtopped structures: approximate ranges of $\mathrm{d}_{s} / \mathrm{gT}^{2}$ studied by various investigators.

Table 7-3. Some considerations of breakwater selection.

Increasing Permeability \longrightarrow			
		Impermeable	Permeable
	Submerged	High wave transmission $\left(K_{T}>0.4\right)$ Low reflection Low amount of material Does not obstruct view May be a navigation hazard	Same Same Same Same Same Provides habitat for marine life
	Subaerial	Low transmission except where runup is extreme Good working platform High reflection Occupies little space Failure may be dramatic Inhibits circulation	Excellent dissipator of wave energy Low transmission Low reflection Deserves serious consideration if adequate armor material is available Structure can be functional even with some failure Provides habitat for marine life Allows circulation due to low-steepness waves

Figure 7-37. Selected wave transmission results for a submerged breakwater.

Figure 7-38. Wave transmission coefficients for vertical wall and vertical thin-wall breakwaters where $0.0157 \leq \mathrm{d}_{\mathrm{S}} / \mathrm{gT}^{2} \leq 0.0793$.
where the empirical overtopping coefficient C gradually decreases as the relative breakwater crest width B increases; i.e.,

$$
\begin{equation*}
C=0.51-0.11\left(\frac{B}{h}\right) ; 0<\frac{B}{h}<3.2 \tag{7-18}
\end{equation*}
$$

The case of monochromatic waves is shown in Figure 7-39 for selected structure crest width-to-height ratios.

In the case of irregular waves, runup elevation varies from one wave to the next. Assuming waves and resulting runup have a Rayleigh distribution, equation (7-17) can be integrated, with results shown in Figure 7-40 (note that for random waves R_{s} is the significant runup determined from the incident significant wave height H_{S} and period of peak energy density T_{p}). It can be seen by comparing Figures $7-39$ and $7-40$ that monochromatic wave conditions with a given height and period will usually have higher average wave transmission coefficients than irregular waves with the given significant wave height and period of peak energy density. This is because many of the runups in an irregular condition are small. However, high structures experience some transmission by overtopping due to the occasional large runup.

The distribution of transmitted wave heights for irregular waves is given in Figures 7-41 (see Fig. 7-42 for correction factor) as a function of the percentage of exceedance, p. The following examples illustrate the use of these curves.

* * * * * * * * * * * * * * * EXAMPLE PROBLEM 9 * * * * * * * * * * * * * * *

FIND: The ratio of the significant transmitted wave height to the incident
significant wave height for an impermeable breakwater with
and

$$
\frac{\mathrm{B}}{\mathrm{~h}}=0.1
$$

$$
\frac{F}{R_{s}}=0.6 \text { (irregular waves) }
$$

SOLUTION: From Figure $7-40$, the value is found to be

$$
\frac{\left(\mathrm{H}_{\mathrm{s}}\right) \mathrm{t}}{\mathrm{H}_{\mathrm{s}}}=0.13
$$

so the transmitted significant wave height is 13 percent of the incident significant height.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

[^0]: 1 Woodhouse (1978).

